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Abstract 

We describe the implementation of a reliable, robust and flexible gain correction and energy 

calibration algorithm for pixelated spectroscopic X-ray detectors. This algorithm uses a data 

processing method known as correlation optimised warping which aligns shifted datasets by means of 

a segmental linear stretching and compression of the spectral data in order to best correlate with a 

reference spectrum. We found the algorithm to be very robust against low-count spectroscopy, and 

was reliable in a range of different spectroscopic applications. Analysis of the integrated spectrum 

over all pixels for a Cerium K-alpha X-ray emission (at 34.72 keV)  yielded a peak width of 2.45 keV 

before alignment and 1.11 keV after alignment. This compares favourably with the best in class pixel 

peak width of 0.76 keV and the mean peak width for all pixels of 1.00 keV. We also found the 

algorithm to be more user friendly than other peak-search algorithms because there is less external 

input. A key advantage of this algorithm is that it requires no prior knowledge of the input spectral 

characteristics, shape or quality of the data. This therefore lends itself to being useful for in-line 

processing and potentially removes the need for a separate calibration standard (e.g. a radioactive 

source). This algorithm can be used for any system that simultaneously collects large numbers of 

spectral data - including multi-element detectors. 

Introduction 

Energy-resolving semiconductor detectors are extensively used for the quantitative study of the 

energy spectra from X-ray and gamma-ray sources. Applications include: elemental analysis in 

materials and geo-sciences; nuclear safety and environmental monitoring; nuclear medicine and 

astronomy. Increasingly, multi-element semiconductor detectors are being developed in order to 

improve count rates and sensitivities. These are finding applications in electron microscopes and at 

synchrotron radiation facilities to enable fast acquisitions and mapping capabilities [1, 2]. 4-element 

silicon drift diode and 32-element monolithic germanium detectors are now widely available [3, 4]. A 

384 element silicon detector has also been reported [5]. Pixelated semiconductor detectors are also in 

development, these have the ability to measure X-ray spectra in a pixelated manner enabling the 

combination of imaging and spectroscopy. A 264x264 pixel silicon pnCCD detector has been 

developed [6] and a 400 x 400 pixel CdTe detector has also been reported [7]. These types of 

pixelated detectors can be applied to a variety of areas of research such as: biomedical science [8-10], 

materials and geological sciences [11-15], astronomy [16], cultural heritage[17] and security 

screening [18, 19] applications. 



An important data processing step for both multi-element and pixelated detectors is the energy 

calibration and gain correction of individual detector elements or pixels. This process enables the 

spectra produced from each pixel to be aligned on a common energy axis. Due to inhomogeneities 

between individual pixels arising from impurities and defects and/or manufacturing variations in 

electronic components, the inter-pixel spectral performance can vary widely. This can manifest itself 

either as variations in the gain, producing an apparent energy shift and offset, or as variations in the 

spectral performance through changes in the energy resolution, sensitivity or noise. Whilst the spectral 

performance of individual pixels cannot generally be improved by post-processing, corrections for 

gain variations can be achieved using a calibration procedure. This typically involves exposing the 

detector to a uniform flux of radiation with known specific characteristic emissions (e.g. from a 

radioactive source), applying an algorithm to identify these characteristic emissions in each pixel 

spectrum, and then aligning them on to a common axis. As the number of pixels in spectroscopic 

detectors increases, automated correction algorithms that can reliably and rapidly align large numbers 

of spectra will become increasingly important. 

Many techniques for automated spectral calibration and gain correction have been published, 

generally involving least-squares fitting of an emission line with modified Gaussian functions 

representing the peak shape [20, 21]. This is sometimes performed after prior convolution of the 

spectra to reduce background and emphasize the peaks [22]. A method based upon a peak search 

algorithm has also been reported which was found to be reliable for gamma-ray spectroscopic data 

[23].  

Whilst these peak fitting or peak search algorithms have been shown to perform well for the 

applications described, there may be situations in which they may not be reliable, or even practical. 

For example, in the case of a detector that has a particularly pronounced inter-pixel gain variation 

(e.g. due to an inhomogeneous detector medium), the individual spectra may vary by so much that it 

becomes difficult to confidently identify the exact peak of interest using an automated algorithm that 

relies on some prior knowledge of the peak locations. Another potential scenario would be when there 

are no specific characteristic peaks to use as a calibration, for example when measuring the 

bremsstrahlung radiation emitted from an X-ray tube. A final example is the case of a pixelated 

detector that has a generally good spectral response, apart from a minority of poor responding pixels 

(say <1% of the total). These pixels might show a range of responses, from completely inoperative, to 

reduced sensitivity or reduced energy resolution. These pixels could be easily masked out and 

disregarded, however this is potentially wasteful since many may still contain some adequate spectral 

information. 

The above examples highlight the potential shortcomings of simple peak-search algorithms for energy 

calibration and gain correction of pixelated spectroscopic detectors. Herein, we describe the 

implementation of a reliable, robust and flexible gain correction and energy calibration algorithm that 

can be applied to a variety of data types and pixel detector responses. This algorithm uses a data 

processing method known as correlation optimised warping (COW). COW aligns shifted datasets by 

means of a segmental linear stretching and compression of the spectral data in order to best correlate 

with a reference spectrum. This is achieved by dividing the un-aligned data into a user specified 

number of segments. Each segment may be warped to a smaller or greater length using linear 

interpolation. A second parameter, called the slack, is defined so as to limit the movement of the 

segment boundary and as such limit to a finite (and calculable) number of possible combinations. 

Determining the optimal alignment is now a question of finding the optimal combination of warpings 

of the segments, where no segment may be warped by more than the slack length. This is achieved 

using a correlation coefficient and by examining all possible combinations section by section using 



dynamic programming. The fundamental principles of COW are well developed: The algorithm was 

introduced by Nielsen et al. [24] as a method to correct for shifts in discrete data signals and has 

principally been used to align chromatographic data [25] but has found multiple applications since 

[26, 27]. The main advantage of this algorithm is its semi-automatic nature, enabling large numbers of 

spectra to be processed with very little external user input. This therefore lends itself to be highly 

useful for calibrating and aligning data collected from pixelated spectroscopic X-ray detectors, 

whereby thousands of spectra need to be individually aligned and calibrated. 

Methods 

Detector 

The spectroscopic X-ray detector used in this work is the HEXITEC detector [28]. This consists of a 1 

mm thick CdTe single crystal detector (20 × 20 mm
2
) bump-bonded to a large area ASIC packaged 

with a high performance data acquisition system. The detector has 80 × 80 pixels on a 250 μm pitch 

with an energy resolution of 800 eV at 59.5 keV and 1500 eV at 141 keV [28]. During operation each 

photon event has its energy, pixel position and the frame in which it occurs recorded. Events are 

processed and histograms are formed according to measured energy into 0.25 keV wide bins. Between 

400 - 1000 bins are typically used, depending on the maximum X-ray energy. Normally, during this 

process, a correction is employed to deal with so-called charge sharing, in which the energy deposited 

by a photon spreads between two or more pixels, which appear to be measured as multiple lower 

energy photon measurements on neighbouring pixels [29]. When the flux is sufficiently low it is 

possible to identify these shared events and apply a correction. In this paper, we use charge sharing 

discrimination, where all shared events are deleted.  

In order to fully test the performance of the COW algorithm, we have examined three different types 

of spectroscopic data: X-ray fluorescence (XRF), gamma-ray spectroscopy and X-ray spectroscopy. 

Each dataset was collected using different HEXITEC detector units. 

X-ray fluorescence data 

The XRF data was collected by illuminating a series of materials containing heavy elements (Pb foil, 

Ta foil and Cerium oxide powder) with a laboratory X-ray tube (120kV, 300µA, tungsten target) and 

collecting the emission signal for a total exposure time of 5 minutes.  

Gamma-ray data 

The gamma-ray spectra were collected from a flood  source, containing a mixture of 29MBq of Ga-67 

gallium citrate, 30MBq of Tc-99m sodium pertechnetate, 55MBq of I-123 sodium iodide and pure 

water. These radionuclides are common in clinical nuclear medicine applications and were chosen to 

cover a broad spectral range. Data were acquired over 40 minutes to collect a sufficient number of 

events to conduct analysis of the spectra collected by each pixel.  

Spectroscopic X-ray data 

The absorption spectra were measured by directly illuminating the detector with X-rays from a 

laboratory microfocus X-ray tube (70 kV, 10µA, tungsten target) filtered by 1 mm of copper, with a 

total exposure time of 1 minute. 

 



Algorithm 

The following was implemented using MATLAB version 8.3 (R2014a) and the COW MATLAB 

toolbox which can be found at [30], as developed by Tomasi et al. [25]. There are two initial 

parameters that need to be defined in order to implement the COW algorithm: segment length and 

slack. The choice of these input parameters may influence  the algorithm performance as a whole.  

Therefore, the COW toolbox includes an automated optimisation routine which estimates the most 

appropriate values for these parameters based upon the raw data, or a portion of the raw data [31]. 

Depending on the type (e.g. X-ray fluorescence, gamma-ray or X-ray absorption spectra) and quality 

(e.g. signal-to-noise ratio) of the data, the segment length and slack parameters found by this 

algorithm may vary, but are largely related to the total number of channels in the spectrum. For the 

data presented below, using this automated optimisation routine we obtained values for the segment 

length to be in the range of 15 - 40, and slack in the range of 2 - 15. We also developed an 

independent test algorithm which measured the full width at half maximum (FWHM) of a gamma-ray 

photopeak after summing all pixel spectra.  This gives a measure of the overall performance of the 

COW algorithm, as any mis-aligned pixel spectra will lead to a degraded FWHM.  By iteratively 

varying the values for segment length and slack, our independent algorithm obtained optimum 

parameters of segment length = 20 and slack = 10. Therefore for data which is 400 channels in length, 

this is split into 20 segments, with boundaries allowed to shift by +/-10 channels. In practice, we 

found the warping parameters returned by the COW algorithm to be relatively insensitive to the 

segment length and slack, provided they were in the ranges obtained by the optimisation routine 

provided with the COW toolbox.  As such, we used the parameters obtained by our independent 

optimisation algorithm for all subsequent analysis.  

After choosing the appropriate values for segment length and slack, the COW algorithm can then be 

implemented. This is achieved by moving the segment boundaries (within the confines of the slack 

parameter) whilst correlating against a reference spectrum. This is performed for every pixel 

spectrum. The output of this algorithm is the segment starting points for each pixel - these we call the 

'warping values'. These values are then input into a separate application which performs linear 

interpolation over the segment lengths so as to stretch and shift the spectra. The final result should be 

well aligned spectra. A snippet of the MATLAB code to implement this is shown in Figure 1. 

 



 

 

Figure 1: MATLAB code snippet used to execute the COW algorithm. The functions 'cow' and 

'cow_apply' are both from the COW MATLAB toolbox. 

An important aspect is the choice of reference spectrum. This has a strong influence on the 

performance of the COW algorithm since all other spectra are correlated and warped against this 

reference, so it is appropriate to pick a reference that shows a 'normal' behaviour. Therefore, the 

reference spectrum should have gain value comparable to the average across the entire detector, and it 

should also have good spectral performance (low noise, high energy resolution). To avoid subjective 

bias in the selection of a reference spectrum, we used four separate randomly chosen reference spectra 

from known “good” detector pixels, and calculated the warping values for each one. We then took the 

average figures from these four, and used these as the final warping values. We found that this had the 

advantage of removing noise that was apparent in the total integrated spectrum when using lower 

quality reference spectra, whilst at the same time negating any user input bias of the over the choice of 

the reference spectrum. 

Results & Discussion 

X-ray fluorescence spectroscopy 

Figure 2a shows two randomly selected pixel spectra before and after correction using COW. Before 

correction, the spectra are poorly aligned in the energy axis due to variations in inter-pixel gain. After 

correction (Figure 2b), the spectra are much more closely aligned, allowing the energy axis to be 

calibrated using the known peak energies based on any one pixel spectrum. Figure 2c shows a 

calibration plot using some of the XRF peaks. A least-squares linear fit yields the energy calibration y 

= 0.231 [keV/channel] x + 1.59 [keV], where x is the uncalibrated axis with units of channel number 

and y is the calibrated axis with units of keV. The norm of the residuals for this fit was found to be 

0.278. An advantage of calibrating in this fashion is that a peak search algorithm only has to be 

utilised once, whereas for a pixel-wise method, a peak search has to be applied to every individual 

spectrum. In practice, this can be highly computationally intensive. 



 

Figure 2: a) XRF data with two randomly selected pixel spectra showing a typical gain 

variation. b) The same two spectra after alignment using COW. c) Energy calibration plot from 

selected emission peaks. d) Total sum spectrum over all pixels before and after calibration. 

A useful method for characterising the performance of the algorithm is to look at the total spectrum 

summed over all the pixels. This spectrum, without correction, would exhibit broad or overlapping 

peaks due to the random shift of each pixel spectrum along the energy axis. In contrast, a well-

corrected dataset would exhibit narrow peaks since all pixel spectra should be well aligned. Figure 2d 

shows the integrated spectrum before and after energy scale correction using COW. Before 

calibration, it is very difficult to identify the specific peaks in the spectrum, due to the degraded 

spectral resolution caused by mis-aligned pixel spectra. The uncorrected summed spectra exhibit a 

doublet peak splitting, resulting from a bimodal distribution of gain factors across the detector. This 

could be due to the gain being affected in one area of the detector, for example due to poor bonding 

between detector and ASIC, potentially introducing a resistive or capacitive coupling. After 

correction, the total sum spectrum shows clean narrow peaks and resembles the shape of a single pixel 

spectrum. Fitting a Gaussian function to the Ce Kα peak (@ 34.7 keV) in the total sum spectrum 

obtained a FWHM of 2.45 keV before alignment and 1.11 keV after alignment. This compares 

favourably with the best in class pixel FWHM of 0.76 keV and the mean FWHM for all pixels of 1.00 

keV. Typically 1% of pixels show some non-uniformities due to crystal defects, like inclusions. These 

manifest as broadening of the spectral lines or distortion of the shape of the spectrum (dependant on 

the depth of the defect in the crystal). Figure 3 shows how the COW algorithm handles these types of 

defective pixel spectra. Four separate spectra showing a variety of spectral responses are shown, all 

after alignment using COW. Pixel (66,42) represents a good quality spectrum as a reference. Pixel 



(38,40) shows poor spectral response at high energy, but with otherwise narrow peaks at low energy. 

Pixel (76,1) shows good sensitivity but significant peak broadening at all energies. Pixel (35,47) 

shows a generally poor response throughout the spectral range. What is evident is how the COW 

algorithm does a good job at aligning these poor quality spectra. This would otherwise be difficult or 

impossible using peak-search algorithms. The advantage of this approach is that useful spectral 

information can still be extracted, even for poor quality pixels. These pixels would otherwise have to 

have been disregarded using a peak-search algorithm, due to uncertainty on peak position finding. 

 

Figure 3: Four separate pixel spectra (offset vertically for clarity) showing a variety of spectral 

responses, all after alignment using COW. Pixel (66,42) represents a good quality spectrum as a 

reference. Pixel (38,40) shows poor spectral response at high energy. Pixel (76,1) shows good 

sensitivity but significant peak broadening. Pixel (35,47) shows a generally poor response 

throughout the spectral range. What is evident is that the COW algorithm does a good job at 

aligning these poor quality spectra. 

Spectroscopic X-ray imaging 

We have also tested the same algorithms on spectra collected directly from a laboratory tungsten 

target microfocus X-ray source. This data represents a more challenging situation for a peak-search 

algorithm since there are few identifier peaks that can be used to align the spectra and the signal-to-

noise ratio is relatively poor due to low number of counts. Figure 4 shows the results before and after 

applying the correction. In these spectra, the two peaks at channel numbers of about 100 and 115 are 

from Cd and Te K line emissions. These are secondary emissions inside the detector, stimulated from 

the incident radiation and are self-absorbed. The main contribution to the spectra is from 

Bremstrallung radiation producing the broadband polychromatic emission profile. Before correction, 

the spectral features in each pixel are seen to be shifted relative to one another due to inter-pixel gain 

variations, as expected. After correction, it can be seen that the spectral features become well aligned 



(Figure 4b). In order to calibrate the energy axis, we used the end-point energies at different tube 

voltages (40 kV, 50 kV, 60 kV, 70 kV and 80 kV) as the reference signal. The end-point energy is 

found by plotting the measured X-ray intensity (after summing over all pixels) on a logarithmic scale. 

Straight lines extrapolating the background signal and X-ray signal are drawn, the intersection point is 

used as the end-point. These values are plotted on a calibration curve as shown in Figure 4c. A least-

squares fit of a linear equation yields the energy calibration y = 0.207 [keV/channel] x + 1.90 [keV], 

where x is the uncalibrated axis with units of channel number and y is the calibrated axis with units of 

keV. The norm of the residuals for this fit was found to be 0.31. We have again used the spectrum 

integrated over all pixels as a measure of the quality of the correction procedure, as shown in Figure 

4d. It can be seen that the corrected spectrum shows narrow aligned peaks for the detector self-

emission lines. There is some modification of the spectral shape for the bremsstrahlung emission, but 

otherwise there is very little change in the spectral response. This indicates that the gain variation was 

already very uniform for this detector prior to calibration. 

 

Figure 4: a) Spectra from a microfocus X-ray tube (70 kV) showing two randomly selected 

pixels with typical gain variations. b) The same pixels after alignment using COW. c) 

Calibration plot using the end-point energy as the reference signal for 40 kV, 50 kV, 60 kV, 70 

kV and 80 kV. The inset depicts how the end-point energy is found through straight line 

intersects. d) Total sum spectrum over all pixels before and after alignment. 

 

 

 



Gamma-ray spectroscopy 

Lastly we have tested COW on gamma-ray spectra collect from a series of common radionuclides.  

This type of data offers another challenging situation with the low-count spectra covering a wide 

energy range (up to 900 channels) with higher detector dynamic range. The results of applying the 

algorithm are shown in Figure 5. Figure 5a shows two randomly chosen pixel spectra exhibiting 

different gain values. After applying COW to this data, these pixel spectra become well aligned 

without affecting the overall spectral shape, as shown in Figure 5b. An energy calibration can now be 

performed by identifying individual gamma emission peaks, as shown in Figure 5c. A least-squares 

linear fit yields the energy calibration y = 0.214 [keV/channel] x - 0.40 [keV], where x is the 

uncalibrated axis with units of channel number and y is the calibrated axis with units of keV. The 

norm of the residuals for this fit was found to be 3.66. Figure 5d shows the summed spectrum over all 

pixels before and after application of the algorithm. A clear narrowing of peaks is observed, 

particularly at higher energies. Again, by extracting FWHM values for the I-123 peak (@159.0 keV) 

we obtained 3.14 keV before alignment and 1.18 keV after alignment. This compares favourably with 

the best in class pixel FWHM of 0.78 keV and the mean FWHM for all pixels of 0.99 keV. 

 

 

Figure 5: a) Gamma-ray spectra showing two randomly selected pixels with typical gain 

variations. b) The same two spectra after alignment using COW. c) Calibration plot from 

selected emission peaks. d) Total integrated spectrum before and after calibration. 

 



Conclusions 

We have presented the application of correlated optimised warping to correct for gain variation in 

pixelated spectroscopic X-ray detectors. We found the algorithm to be very robust against low-count 

spectroscopy, and was reliable in a range of different spectroscopic applications. It is also easier to 

use than other peak-search algorithms because there is less user input. A key advantage of this 

algorithm is that it requires no prior knowledge of the input spectral characteristics, shape or quality 

of the data. This therefore lends itself to being useful for in-line processing and potentially removes 

the need for a separate calibration standard (e.g. a radioactive source). This algorithm can be used for 

any system that simultaneously collects large numbers of spectral data - including multi-element 

detectors. 
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