409 research outputs found

    Cn to ccn relationships and cloud microphysical properties in different air masses at a free tropospheric site

    Get PDF
    International audienceThe fraction of aerosol particles activated to droplets (CCN) is often derived from semi-empirical relationships that commonly tend to overestimate droplet number concentration leading to major uncertainties in global climate models. One of the difficulties in relating aerosol concentration to cloud microphysics and cloud albedo lies in the necessity of working at a constant liquid water path (LWP), which is very difficult to control. In this study we observed the relationships between aerosol number concentration (NCN), cloud droplet concentration (Nd) and effective radius (Reff), at the Puy de DÎme (France). A total of 20 cloud events were sampled representing a period of more than 250 h of cloud sampling. Samples are classified first according to air mass origins (Modified Marine, Continental and Polluted) and then according to their liquid water content (Thin, Medium and Thick clouds). The CCN fraction of aerosols appears to vary significantly according to the air mass origin. It is maximum for Continental air masses and minimum for Polluted air masses. Surprisingly, the CCN fraction of Modified Marine air masses fraction is lower than the continental air mass and from expected from previous studies. The limited number of activated particles in Modified Marine air masses is most likely the result of the presence of hydrophobic organic compounds. The limited activation effect leads to a 0.5 to 1 ”m increase in Reff with respect to an ideal Marine case. This is significant and implies that the dReff/dNCN of low-continental clouds is higher than expected

    Cloud chemistry at the Puy de DĂŽme: variability and relationships with environmental factors

    Get PDF
    The chemical composition of cloud water was investigated during the winter-spring months of 2001 and 2002 at the Puy de D&#244;me station (1465 m above sea level, 45&deg;46&prime;22&prime;&prime; N, 2&deg;57&prime;43&prime;&prime; E) in an effort to characterize clouds in the continental free troposphere. Cloud droplets were sampled with single-stage cloud collectors (cut-off diameter approximately 7 &micro;m) and analyzed for inorganic and organic ions, as well as total dissolved organic carbon. Results show a very large variability in chemical composition and total solute concentration of cloud droplets, ranging from a few mg l<sup>-1</sup> to more than 150 mg l<sup>-1</sup>. Samplings can be classified in three different categories with respect to their total ionic content and relative chemical composition: background continental (BG, total solute content lower than 18 mg l<sup>-1</sup>), anthropogenic continental (ANT, total solute content from 18 to 50 mg l<sup>-1</sup>), and special events (SpE, total solute content higher than 50 mg l<sup>-1</sup>). The relative chemical composition shows an increase in anthropogenic-derived species (NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup> and NH<sub>4</sub><sup>+</sup>) from BG to SpE, and a decrease in dissolved organic compounds (ionic and non-ionic) that are associated with the anthropogenic character of air masses. <P style='line-height: 20px;'> We observed a high contribution of solute in cloud water derived from the dissolution of gas phase species in all cloud events. This was evident from large solute fractions of nitrate, ammonium and mono-carboxylic acids in cloud water, relative to their abundance in the aerosol phase. The comparison between droplet and aerosol composition clearly shows the limited ability of organic aerosols to act as cloud condensation nuclei. The strong contribution of gas-phase species limits the establishment of direct relationships between cloud water solute concentration and LWC that are expected from nucleation scavenging

    Numerical quantification of sources and phase partitioning of chemical species in cloud: Application to wintertime anthropogenic air masses at the Puy de DĂŽme station

    Get PDF
    International audienceThe Model of Multiphase Cloud Chemistry M2C2 has recently been extended to account for nucleation scavenging of aerosol particles in the cloud water chemical composition. This extended version has been applied to multiphase measurements available at the Puy de DĂŽme station for typical wintertime anthropogenic air masses. The simulated ion concentrations in cloud water are in reasonable agreement with the experimental data. The analysis of the sources of the chemical species in cloud water shows an important contribution from nucleation scavenging of particles which prevails for nitrate, sulphate and ammonium. Moreover, the simulation shows that iron, which comes only from the dissolution of aerosol particles in cloud water, has a significant contribution in the hydroxyl radical production. Finally, the simulated phase partitioning of chemical species in cloud are compared with measurements. Numerical results show an underestimation of interstitial particulate phase fraction with respect to the measurements, which could be due to an overestimation of activated mass by the model. However, the simulated number scavenging efficiency of particles agrees well with the measured value of 40% of total number of aerosol particles activated in cloud droplets. Concerning the origin of chemical species in cloud water, the model reproduces quite well the contribution of gas and aerosol scavenging estimated from measurements. In addition, the simulation provides the contribution of in-cloud chemical reactivity to cloud water concentrations

    Parameterization of ion-induced nucleation rates based on ambient observations

    Get PDF
    Atmospheric ions participate in the formation of new atmospheric aerosol particles, yet their exact role in this process has remained unclear. Here we derive a new simple parameterization for ion-induced nucleation or, more precisely, for the formation rate of charged 2-nm particles. The parameterization is semi-empirical in the sense that it is based on comprehensive results of one-year-long atmospheric cluster and particle measurements in the size range ~1–42 nm within the EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions) project. Data from 12 field sites across Europe measured with different types of air ion and cluster mobility spectrometers were used in our analysis, with more in-depth analysis made using data from four stations with concomitant sulphuric acid measurements. The parameterization is given in two slightly different forms: a more accurate one that requires information on sulfuric acid and nucleating organic vapor concentrations, and a simpler one in which this information is replaced with the global radiation intensity. These new parameterizations are applicable to all large-scale atmospheric models containing size-resolved aerosol microphysics, and a scheme to calculate concentrations of sulphuric acid, condensing organic vapours and cluster ions

    Charged and Neutral Binary Nucleation of Sulfuric Acid in Free Troposphere Conditions

    Get PDF
    We present a data set of binary nucleation of sulfuric acid and water, measured in the CLOUD chamber at CERN during the CLOUD3 and CLOUD5 campaigns. Four parameters have been varied to cover neutral and ion-induced binary nucleation processes: Sulfuric acid concentration (1e5 to 1e8 molecules per cm^(−3)), relative humidity (10% to 80%), temperature (208-293K) and ion concentration (0-4000 ions per cm^(−3)). In addition, classical nucleation theory implemented with hydrates and ion induced nucleation is compared with the data set. Our model and data are also compared with nucleation rates measured at Puy de Dome in the tropopause

    Characterization of three new condensation particle counters for sub-3 nm particle detection during the Helsinki CPC workshop : the ADI versatile water CPC, TSI 3777 nano enhancer and boosted TSI 3010

    Get PDF
    In this study we characterized the performance of three new particle counters able to detect particles smaller than 3 nm during the Helsinki condensation particle counter (CPC) workshop in summer 2016: the Aerosol Dynamics Inc. (ADI; Berkeley, USA) versatile water condensation particle counter (vWCPC), TSI 3777 nano enhancer (TSI Inc., Shoreview, USA) and modified and boosted TSI 3010-type CPC from Universite Blaise Pascal called a B3010. The performance of all CPCs was first measured with charged tungsten oxide test particles at temperature settings which resulted in supersaturation low enough to not detect any ions produced by a radioactive source. Due to similar measured detection efficiencies, additional comparison between the 3777 and vWCPC were conducted using electrically neutral tungsten oxide test particles and with positively charged tetradodecylammonium bromide. Furthermore, the detection efficiencies of the 3777 and vWCPC were measured with boosted temperature settings yielding supersaturation which was at the onset of homogeneous nucleation for the 3777 or confined within the range of liquid water for the ADI vWCPC. Finally, CPC-specific tests were conducted to probe the response of the 3777 to various inlet flow relative humidities, of the B3010 to various inlet flow rates and of the vWCPC to various particle concentrations. For the 3777 and vWCPC the measured 50% detection diameters (d50s) were in the range of 1.3-2.4 nm for the tungsten oxide particles, depending on the particle charging state and CPC temperature settings, between 2.5 and 3.3 nm for the organic test aerosol, and in the range of 3.2-3.4 nm for tungsten oxide for the B3010.Peer reviewe

    In-cloud processes of methacrolein under simulated conditions – Part 3: Hygroscopic and volatility properties of the formed secondary organic aerosol

    Get PDF
    The hygroscopic and volatility properties of secondary organic aerosol (SOA) produced from the nebulization of solutions after aqueous phase photooxidation of methacrolein was experimentally studied in a laboratory, using a Volatility-Hygroscopicity Tandem DMA (VHTDMA). The obtained SOA were 80% 100&amp;deg;C-volatile after 5 h of reaction and only 20% 100&amp;deg;C-volatile after 22 h of reaction. The Hygroscopic Growth Factor (HGF) of the SOA produced from the nebulization of solutions after aqueous-phase photooxidation of methacrolein is 1.34–1.43, which is significantly higher than the HGF of SOA formed by gas-phase photooxidation of terpenes, usually found almost hydrophobic. These hygroscopic properties were confirmed for SOA formed by the nebulization of the same solutions where NaCl was added. The hygroscopic properties of the cloud droplet residuals decrease with the reaction time, in parallel with the formation of more refractory compounds. This decrease was mainly attributed to the 250&amp;deg;C-refractive fraction (presumably representative of the highest molecular weight compounds), which evolved from moderately hygroscopic (HGF of 1.52) to less hygroscopic (HGF of 1.36). Oligomerization is suggested as a process responsible for the decrease of both volatility and hygroscopicity with time. The NaCl seeded experiments enabled us to show that 19&amp;plusmn;4 mg L&lt;sup&gt;&amp;minus;1&lt;/sup&gt; of SOA was produced after 9.5 h of reaction and 41&amp;plusmn;9 mg L&lt;sup&gt;&amp;minus;1&lt;/sup&gt; after 22 h of in-cloud reaction. Because more and more SOA is formed as the reaction time increases, our results show that the reaction products formed during the aqueous-phase OH-oxidation of methacrolein may play a major role in the properties of residual particles upon the droplet&apos;s evaporation. Therefore, the specific physical properties of SOA produced during cloud processes should be taken into account for a global estimation of SOA and their atmospheric impacts

    In-cloud processes of methacrolein under simulated conditions – Part 2: Formation of secondary organic aerosol

    Get PDF
    The fate of methacrolein in cloud evapo-condensation cycles was experimentally investigated. To this end, aqueous-phase reactions of methacrolein with OH radicals were performed (as described in Liu et al., 2009), and the obtained solutions were then nebulized and dried into a mixing chamber. ESI-MS and ESI-MS/MS analyses of the aqueous phase composition denoted the formation of high molecular weight multifunctional products containing hydroxyl, carbonyl and carboxylic acid moieties. The time profiles of these products suggest that their formation can imply radical pathways. These high molecular weight organic products are certainly responsible for the formation of secondary organic aerosol (SOA) observed during the nebulization experiments. The size, number and mass concentration of these particles increased significantly with the reaction time: after 22 h of reaction, the aerosol mass concentration was about three orders of magnitude higher than the initial aerosol quantity. The evaluated SOA yield ranged from 2 to 12%. These yields were confirmed by another estimation method based on the hygroscopic and volatility properties of the obtained SOA measured and reported by Michaud et al. (2009). These results provide, for the first time to our knowledge, strong experimental evidence that cloud processes can act, through photooxidation reactions, as important contributors to secondary organic aerosol formation in the troposphere

    Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Get PDF
    We use observations of total particle number concentration at 36 worldwide sites and a global aerosol model to quantify the primary and secondary sources of particle number. We show that emissions of primary particles can reasonably reproduce the spatial pattern of observed condensation nuclei (CN) (R2=0.51) but fail to explain the observed seasonal cycle at many sites (R2=0.1). The modeled CN concentration in the free troposphere is biased low (normalised mean bias, NMB=&#8722;88%) unless a secondary source of particles is included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=&#8722;25%). Simulated CN concentrations in the continental boundary layer (BL) are also biased low (NMB=&#8722;74%) unless the number emission of anthropogenic primary particles is increased or an empirical BL particle formation mechanism based on sulfuric acid is used. We find that the seasonal CN cycle observed at continental BL sites is better simulated by including a BL particle formation mechanism (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). Using sensitivity tests we derive optimum rate coefficients for this nucleation mechanism, which agree with values derived from detailed case studies at individual sites
    • 

    corecore