145 research outputs found

    Parallelized Incomplete Poisson Preconditioner in Cloth Simulation

    Get PDF
    Efficient cloth simulation is an important problem for interactive applications that involve virtual humans, such as computer games. A common aspect of many methods that have been developed to simulate cloth is a linear system of equations, which is commonly solved using conjugate gradient or multi-grid approaches. In this paper, we introduce to the computer gaming community a recently proposed preconditioner, the incomplete Poisson preconditioner, for conjugate gradient solvers. We show that the parallelized incomplete Poisson preconditioner (PIPP) performs as well as the current state-of-the-art preconditioners, while being much more amenable to standard thread-level parallelism. We demonstrate our results on an 8-core Apple* Mac* Pro and a 32-core code name Emerald Ridge system

    Salvage high-dose chemotherapy in female patients with relapsed/refractory germ-cell tumors: A retrospective analysis of the European Group for Blood and Marrow Transplantation (EBMT)

    Get PDF
    Background: High-dose chemotherapy (HDC) with hematopoietic progenitor cell transplantation is a standard option for relapsed/refractory testicular germ-cell tumor (GCT), but only few data have been reported in female patients with GCT. We conducted a retrospective analysis of female patients with GCT treated with HDC and registered with the European Society for Blood and Marrow Transplantation. Patients and methods: Between 1985 and 2013, 60 registered female patients with GCT, median age 27 years (range 15-48), were treated with salvage HDC. Forty patients (67%) had primary ovarian GCT, 8 (13%) mediastinal, 7 (12%) retroperitoneal and 5 (8%) other primary sites/unknown. Twenty-two patients (37%) received HDC as second-line therapy, 29 (48%) as third-line, and 9 (15%) as fourth- to sixth-line. Nine of 60 patients (15%) received HDC as late-intensification with no evidence of metastasis before HDC. The conditioning HDC regimens comprised carboplatin in 51 of 60 cases (85%), and consisted of a single HDC cycle in 31 cases (52%), a multi-cycle HDC regimen in 29 (48%). Results: Nine cases who underwent late intensification HDC were not evaluable for response. Of the other 51 assessable patients, 17 (33%) achieved a complete response (CR), 8 (16%) a marker-negative partial remission (PRm-), 5 (10%) a marker-positive partial remission, 5 (10%) stable disease, and 13 (25%) progressive disease. There were 3 toxic deaths (6%). With an overall median follow-up of 14 months (range 1-219), 7 of 9 (78%) patients with late intensification and 18 of the 25 patients (72%) achieving a CR/PRm- following HDC were free of relapse/progression. In total, 25 of 60 patients (42%) were progression-free following HDC at a median follow-up of 87 months (range 3-219 months). Conclusions: Salvage HDC based on carboplatin represents a therapeutic option for female patients with relapsed/refractory GCT

    A novel TMPRSS6 mutation that prevents protease auto-activation causes IRIDA

    Get PDF
    IRIDA (iron-refractory iron-deficiency anaemia) is a rare autosomal-recessive disorder hallmarked by hypochromic microcytic anaemia, low transferrin saturation and high levels of the iron-regulated hormone hepcidin. The disease is caused by mutations in the transmembrane serine protease TMPRSS6 (transmembrane protease serine 6) that prevent inactivation of HJV (haemojuvelin), an activator of hepcidin transcription. In the present paper, we describe a patient with IRIDA who carries a novel mutation (Y141C) in the SEA domain of the TMPRSS6 gene. Functional characterization of the TMPRSS6(Y141C) mutant protein in cultured cells showed that it localizes to similar subcellular compartments as wild-type TMPRSS6 and binds HJV, but fails to auto-catalytically activate itself. As a consequence, hepcidin mRNA expression is increased, causing the clinical symptoms observed in this IRIDA patient. The present study provides important mechanistic insight into how TMPRSS6 is activated

    Identification of a novel biomarker candidate, a 4.8-kDa peptide fragment from a neurosecretory protein VGF precursor, by proteomic analysis of cerebrospinal fluid from children with acute encephalopathy using SELDI-TOF-MS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute encephalopathy includes rapid deterioration and has a poor prognosis. Early intervention is essential to prevent progression of the disease and subsequent neurologic complications. However, in the acute period, true encephalopathy cannot easily be differentiated from febrile seizures, especially febrile seizures of the complex type. Thus, an early diagnostic marker has been sought in order to enable early intervention. The purpose of this study was to identify a novel marker candidate protein differentially expressed in the cerebrospinal fluid (CSF) of children with encephalopathy using proteomic analysis.</p> <p>Methods</p> <p>For detection of biomarkers, CSF samples were obtained from 13 children with acute encephalopathy and 42 children with febrile seizure. Mass spectral data were generated by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) technology, which is currently applied in many fields of biological and medical sciences. Diagnosis was made by at least two pediatric neurologists based on the clinical findings and routine examinations. All specimens were collected for diagnostic tests and the remaining portion of the specimens were used for the SELDI-TOF MS investigations.</p> <p>Results</p> <p>In experiment 1, CSF from patients with febrile seizures (n = 28), patients with encephalopathy (n = 8) (including influenza encephalopathy (n = 3), encephalopathy due to rotavirus (n = 1), human herpes virus 6 (n = 1)) were used for the SELDI analysis. In experiment 2, SELDI analysis was performed on CSF from a second set of febrile seizure patients (n = 14) and encephalopathy patients (n = 5). We found that the peak with an m/z of 4810 contributed the most to the separation of the two groups. After purification and identification of the 4.8-kDa protein, a 4.8-kDa proteolytic peptide fragment from the neurosecretory protein VGF precursor (VGF4.8) was identified as a novel biomarker for encephalopathy.</p> <p>Conclusions</p> <p>Expression of VGF4.8 has been reported to be decreased in pathologically degenerative changes such as Alzheimer's disease, amyotrophic lateral sclerosis (ALS), frontotemporal dementia, and encephalopathy. Thus, the VGF4.8 peptide might be a novel marker for degenerative brain conditions.</p

    Rapid Etiological Classification of Meningitis by NMR Spectroscopy Based on Metabolite Profiles and Host Response

    Get PDF
    Bacterial meningitis is an acute disease with high mortality that is reduced by early treatment. Identification of the causative microorganism by culture is sensitive but slow. Large volumes of cerebrospinal fluid (CSF) are required to maximise sensitivity and establish a provisional diagnosis. We have utilised nuclear magnetic resonance (NMR) spectroscopy to rapidly characterise the biochemical profile of CSF from normal rats and animals with pneumococcal or cryptococcal meningitis. Use of a miniaturised capillary NMR system overcame limitations caused by small CSF volumes and low metabolite concentrations. The analysis of the complex NMR spectroscopic data by a supervised statistical classification strategy included major, minor and unidentified metabolites. Reproducible spectral profiles were generated within less than three minutes, and revealed differences in the relative amounts of glucose, lactate, citrate, amino acid residues, acetate and polyols in the three groups. Contributions from microbial metabolism and inflammatory cells were evident. The computerised statistical classification strategy is based on both major metabolites and minor, partially unidentified metabolites. This data analysis proved highly specific for diagnosis (100% specificity in the final validation set), provided those with visible blood contamination were excluded from analysis; 6-8% of samples were classified as indeterminate. This proof of principle study suggests that a rapid etiologic diagnosis of meningitis is possible without prior culture. The method can be fully automated and avoids delays due to processing and selective identification of specific pathogens that are inherent in DNA-based techniques

    Long-term efficacy, tolerability and overall survival in patients with platinum-sensitive, recurrent high-grade serous ovarian cancer treated with maintenance olaparib capsules following response to chemotherapy

    Get PDF
    BACKGROUND: In Study 19, maintenance monotherapy with olaparib significantly prolonged progression-free survival vs placebo in patients with platinum-sensitive, recurrent high-grade serous ovarian cancer. METHODS: Study 19 was a randomised, placebo-controlled, Phase II trial enrolling 265 patients who had received at least two platinum-based chemotherapy regimens and were in complete or partial response to their most recent regimen. Patients were randomised to olaparib (capsules; 400 mg bid) or placebo. We present long-term safety and final mature overall survival (OS; 79% maturity) data, from the last data cut-off (9 May 2016). RESULTS: Thirty-two patients (24%) received maintenance olaparib for over 2 years; 15 (11%) did so for over 6 years. No new tolerability signals were identified with long-term treatment and adverse events were generally low grade. The incidence of discontinuations due to adverse events was low (6%). An apparent OS advantage was observed with olaparib vs placebo (hazard ratio 0.73, 95% confidence interval 0.55‒0.95, P = 0.02138) irrespective of BRCA1/2 mutation status, although the predefined threshold for statistical significance was not met. CONCLUSIONS: Study 19 showed a favourable final OS result irrespective of BRCA1/2 mutation status and unprecedented long-term benefit with maintenance olaparib for a subset of platinum-sensitive, recurrent ovarian cancer patients

    AID-Targeting and Hypermutation of Non-Immunoglobulin Genes Does Not Correlate with Proximity to Immunoglobulin Genes in Germinal Center B Cells

    Get PDF
    Upon activation, B cells divide, form a germinal center, and express the activation induced deaminase (AID), an enzyme that triggers somatic hypermutation of the variable regions of immunoglobulin (Ig) loci. Recent evidence indicates that at least 25% of expressed genes in germinal center B cells are mutated or deaminated by AID. One of the most deaminated genes, c-Myc, frequently appears as a translocation partner with the Ig heavy chain gene (Igh) in mouse plasmacytomas and human Burkitt's lymphomas. This indicates that the two genes or their double-strand break ends come into close proximity at a biologically relevant frequency. However, the proximity of c-Myc and Igh has never been measured in germinal center B cells, where many such translocations are thought to occur. We hypothesized that in germinal center B cells, not only is c-Myc near Igh, but other mutating non-Ig genes are deaminated by AID because they are near Ig genes, the primary targets of AID. We tested this “collateral damage” model using 3D-fluorescence in situ hybridization (3D-FISH) to measure the distance from non-Ig genes to Ig genes in germinal center B cells. We also made mice transgenic for human MYC and measured expression and mutation of the transgenes. We found that there is no correlation between proximity to Ig genes and levels of AID targeting or gene mutation, and that c-Myc was not closer to Igh than were other non-Ig genes. In addition, the human MYC transgenes did not accumulate mutations and were not deaminated by AID. We conclude that proximity to Ig loci is unlikely to be a major determinant of AID targeting or mutation of non-Ig genes, and that the MYC transgenes are either missing important regulatory elements that allow mutation or are unable to mutate because their new nuclear position is not conducive to AID deamination

    Synthetic biology to access and expand nature's chemical diversity

    Get PDF
    Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology — including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits — and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products
    corecore