624 research outputs found

    On the role of stochastic Fermi acceleration in setting the dissipation scale of turbulence in the interstellar medium

    Full text link
    We consider the dissipation by Fermi acceleration of magnetosonic turbulence in the Reynolds Layer of the interstellar medium. The scale in the cascade at which electron acceleration via stochastic Fermi acceleration (STFA) becomes comparable to further cascade of the turbulence defines the inner scale. For any magnetic turbulent spectra equal to or shallower than Goldreich-Sridhar this turns out to be 1012\ge 10^{12}cm, which is much larger than the shortest length scales observed in radio scintillation measurements. While STFA for such spectra then contradict models of scintillation which appeal directly to an extended, continuous turbulent cascade, such a separation of scales is consistent with the recent work of \citet{Boldyrev2} and \citet{Boldyrev3} suggesting that interstellar scintillation may result from the passage of radio waves through the galactic distribution of thin ionized boundary surfaces of HII regions, rather than density variations from cascading turbulence. The presence of STFA dissipation also provides a mechanism for the non-ionizing heat source observed in the Reynolds Layer of the interstellar medium \citep{Reynolds}. STFA accommodates the proper heating power, and the input energy is rapidly thermalized within the low density Reynolds layer plasma.Comment: 12 Pages, no figures. Accepted for publication in MNRA

    The Effect of a Hip Strengthening Program on Mechanics during Running and Single Leg Squatting

    Get PDF
    STUDY DESIGN: Block randomized controlled trial. OBJECTIVES: To investigate whether a strengthening and movement education program, targeting the hip abductors and hip external rotators, alters hip mechanics during running and during a single-leg squat. BACKGROUND: Abnormal movement patterns during running and single-leg squatting have been associated with a number of running-related injuries in females. Therapeutic interventions for these aberrant movement patterns typically include hip strengthening. While these strengthening programs have been shown to improve symptoms, it is unknown if the underlying mechanics during functional movements is altered. METHODS: Twenty healthy females with excessive hip adduction during running, as determined by instrumented gait analysis, were recruited. The runners were matched by age and running distance, and randomized to either a training group or a control group. The training group completed a hip strengthening and movement education program 3 times per week for 6 weeks in addition to single-leg squat training with neuromuscular reeducation consisting of mirror and verbal feedback on proper mechanics. The control group did not receive an intervention but maintained the current running distance. Using a handheld dynamometer and standard motion capture procedures, hip strength and running and single-leg squat mechanics were compared before and after the strengthening and movement education program. RESULTS: While hip abductor and external rotation strength increased significantly (P<.005) in the training group, there were no significant changes in hip or knee mechanics during running. However, during the single-leg squat, hip adduction, hip internal rotation, and contralateral pelvic drop all decreased significantly (P = .006, P = .006, and P = .02, respectively). The control group exhibited no changes in hip strength, nor in the single-leg squat or running mechanics at the conclusion of the 6-week study. CONCLUSION: A training program that included hip strengthening and movement training specific to single-leg squatting did not alter running mechanics but did improve single-leg squat mechanics. These results suggest that hip strengthening and movement training, when not specific to running, do not alter abnormal running mechanics. LEVEL OF EVIDENCE: Therapy, level 2b. NOTE: This is not the final published version. The final version was published in the Journal of Orthopaedic and Sports Physical Therapy. 2011 Sep; 41(9): 625-32. doi: 10.2519/jospt.2011.347

    Adoption -- Right to Inherit Upon Readoption

    Get PDF

    Adoption -- Right to Inherit Upon Readoption

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationSnow and ice cover exhibits a high degree of spatial and temporal variability. Data from multispectral optical remote sensing instruments such as Landsat are an underutilized resource that can extend our ability for mapping these phenomena. High resolution imagery is used to demonstrate that even at finer spatial resolutions (below 100 m), pixels with partial snow cover are common throughout the year and nearly ubiquitous during the meltout period. This underscores the importance of higher spatial resolution datasets for snow cover monitoring as well as the utility of fractional snow covered area (fSCA) monitoring approaches. Landsat data are used to develop a fully automated approach for mapping persistent ice and snow cover (PISC). This approach relies on the availability of numerous Landsat scenes, an improved technique for automated cloud cover mapping, and a series of automated postprocessing routines. Validation at 12 test sites suggest that the automated PISC mapping approach provides a good approximation of debris-free glacier extent across the Arctic. The PISC mapping approach is then used to produce the first single-source, temporally well-constrained (2010-2014) map of PISC across the conterminous western U.S. The Landsat-derived PISC map is more accurate than both a previously published dataset based on aerial photography acquired during the 1960s, 1970s and 1980s and the National Land Cover Database (NLCD) 2011 extent of perennial snow and ice cover. Further analysis indicates differences between the newly developed Landsat-derived PISC dataset and the previously published glacier dataset can likely be attributed to changes in the extent of PISC over time. Finally, in order to map mean annual snow cover persistence across the entire landscape, we implement a novel canopy adjustment approach designed to improve the accuracy of Landsat-derived fSCA in forested areas. In situ observations indicate canopy-adjusted snow covered area calculated from all available Landsat scenes can provide an accurate estimate of mean annual snow cover duration. The work presented here lays the groundwork for addressing scientific questions regarding the spatial and temporal variability of snow cover, snow accumulation and ablation processes, and the impact of changes in snow cover on physical and ecological systems
    corecore