We consider the dissipation by Fermi acceleration of magnetosonic turbulence
in the Reynolds Layer of the interstellar medium. The scale in the cascade at
which electron acceleration via stochastic Fermi acceleration (STFA) becomes
comparable to further cascade of the turbulence defines the inner scale. For
any magnetic turbulent spectra equal to or shallower than Goldreich-Sridhar
this turns out to be ≥1012cm, which is much larger than the shortest
length scales observed in radio scintillation measurements. While STFA for such
spectra then contradict models of scintillation which appeal directly to an
extended, continuous turbulent cascade, such a separation of scales is
consistent with the recent work of \citet{Boldyrev2} and \citet{Boldyrev3}
suggesting that interstellar scintillation may result from the passage of radio
waves through the galactic distribution of thin ionized boundary surfaces of
HII regions, rather than density variations from cascading turbulence. The
presence of STFA dissipation also provides a mechanism for the non-ionizing
heat source observed in the Reynolds Layer of the interstellar medium
\citep{Reynolds}. STFA accommodates the proper heating power, and the input
energy is rapidly thermalized within the low density Reynolds layer plasma.Comment: 12 Pages, no figures. Accepted for publication in MNRA