1,351 research outputs found

    Notion of territorial system's structure and some approaches to their modeling

    Get PDF
    Development, forming and functioning of the territorial systems of each level of hierarchy and form are complicated and durable processes. The notion of stability occupies the central place and connects with the presence in territorial system some unchangeable invariant, which serves as a starting point of stability. As an example of such invariant (the base carrier of invariant on time characteristics) the usage of structural sistem is proposed. Assignment of territorial system's structure as a function carrier and simultaneous as an invariant in time permits to state the question of the system management by influence on the structure. Ability of the structure for improvement mainly determines peculiarities of the territorial system's behavior and possibilities of their management. Proposed approach permits to use for modeling structure (general and special) multitude theory, which in one tern gives the possibility to determine the corresponding models and modeling structures, pick up special structures in accordance to their inner condition, use their different combinations as multitude of relations and multitude of operations as a base for the modeling structures, etc

    Complex ecological-economical systems: Problems of study (economical aspect)

    Get PDF
    Economical mechanism of the regional land use has been studied as a basis of sustainable development. System of payment for the natural resources considered as a base of it. These payments reflect the diversity of economical forms of property rights by the subjects of the Russian Federation to the natural resources. Rent can serve as a basis for forming the rates of payments, as in the market economy the price for the natural resources is the capitalised rent. It is stated that the payment for the natural resources is the economical form of treatment, which has been pooling together during the process of their owing, using and ordering between their owners and users. The region appropriate the rent, as it is the owner of the bowels of the earth, and in some cases the land rent or the tax on it (under the presence of the private property to the land). The interconnection of such notions as economical growth, land use and protection of the environment has been proofed. The common goals and specific tasks of coming to a cooperative decision has been put, which are necessary for the land use

    β-delayed fission and α decay of At196

    Get PDF
    A nuclear-decay spectroscopy study of the neutron-deficient isotope At196 is reported where an isotopically pure beam was produced using the selective Resonance Ionization Laser Ion Source and On-Line Isotope Mass Separator (CERN). The fine-structure α decay of At196 allowed the low-energy excited states in the daughter nucleus Bi192 to be investigated. A β-delayed fission study of At196 was also performed. A mixture of symmetric and asymmetric fission-fragment mass distributions of the daughter isotope Po196 (populated by β decay of At196) was deduced based on the measured fission-fragment energies. A βDF probability PβDF(At196)=9(1)×10−5 was determined

    Azimuthal anisotropy and correlations in the hard scattering regime at RHIC

    Get PDF
    Azimuthal anisotropy (v2v_2) and two-particle angular correlations of high pTp_T charged hadrons have been measured in Au+Au collisions at sNN\sqrt{s_{NN}}=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high pTp_T partons. The monotonic rise of v2(pT)v_2(p_T) for pT<2p_T<2 GeV/c is consistent with collective hydrodynamical flow calculations. At \pT>3 GeV/c a saturation of v2v_2 is observed which persists up to pT=6p_T=6 GeV/c.Comment: As publishe

    Azimuthal anisotropy of K0S and Lambda + Lambda -bar production at midrapidity from Au+Au collisions at sqrt[sNN]=130 GeV

    Get PDF
    We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, Lambda , and Lambda -bar at midrapidity in Au+Au collisions at sqrt[sNN]=130 GeV at the Relativistic Heavy Ion Collider. The value of v2 as a function of transverse momentum, pt, of the produced particle and collision centrality is presented for both particles up to pt~3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.Alle Autoren: C. Adler, Z. Ahammed, C. Allgower, J. Amonett, B. D. Anderson, M. Anderson, G. S. Averichev, J. Balewski, O. Barannikova, L. S. Barnby, J. Baudot, S. Bekele, V. V. Belaga, R. Bellwied, J. Berger, H. Bichsel, A. Billmeier, L. C. Bland, C. O. Blyth, B. E. Bonner, A. Boucham, A. Brandin, A. Bravar, R. V. Cadman, H. Caines, M. Calderón de la Barca Sánchez, A. Cardenas, J. Carroll, J. Castillo, M. Castro, D. Cebra, P. Chaloupka, S. Chattopadhyay, Y. Chen, S. P. Chernenko, M. Cherney, A. Chikanian, B. Choi, W. Christie, J. P. Coffin, T. M. Cormier, J. G. Cramer, H. J. Crawford, W. S. Deng, A. A. Derevschikov, L. Didenko, T. Dietel, J. E. Draper, V. B. Dunin, J. C. Dunlop, V. Eckardt, L. G. Efimov, V. Emelianov, J. Engelage, G. Eppley, B. Erazmus, P. Fachini, V. Faine, K. Filimonov, E. Finch, Y. Fisyak, D. Flierl, K. J. Foley, J. Fu, C. A. Gagliardi, N. Gagunashvili, J. Gans, L. Gaudichet, M. Germain, F. Geurts, V. Ghazikhanian, O. Grachov, V. Grigoriev, M. Guedon, E. Gushin, T. J. Hallman, D. Hardtke, J. W. Harris, T. W. Henry, S. Heppelmann, T. Herston, B. Hippolyte, A. Hirsch, E. Hjort, G. W. Hoffmann, M. Horsley, H. Z. Huang, T. J. Humanic, G. Igo, A. Ishihara, Yu. I. Ivanshin, P. Jacobs, W. W. Jacobs, M. Janik, I. Johnson, P. G. Jones, E. G. Judd, M. Kaneta, M. Kaplan, D. Keane, J. Kiryluk, A. Kisiel, J. Klay, S. R. Klein, A. Klyachko, A. S. Konstantinov, M. Kopytine, L. Kotchenda, A. D. Kovalenko, M. Kramer, P. Kravtsov, K. Krueger, C. Kuhn, A. I. Kulikov, G. J. Kunde, C. L. Kunz, R. Kh. Kutuev, A. A. Kuznetsov, L. Lakehal-Ayat, M. A. C. Lamont, J. M. Landgraf, S. Lange, C. P. Lansdell, B. Lasiuk, F. Laue, A. Lebedev, R. Lednický, V. M. Leontiev, M. J. LeVine, Q. Li, S. J. Lindenbaum, M. A. Lisa, F. Liu, L. Liu, Z. Liu, Q. J. Liu, T. Ljubicic, W. J. Llope, G. LoCurto, H. Long, R. S. Longacre, M. Lopez-Noriega, W. A. Love, T. Ludlam, D. Lynn, J. Ma, R. Majka, S. Margetis, C. Markert, L. Martin, J. Marx, H. S. Matis, Yu. A. Matulenko, T. S. McShane, F. Meissner, Yu. Melnick, A. Meschanin, M. Messer, M. L. Miller, Z. Milosevich, N. G. Minaev, J. Mitchell, V. A. Moiseenko, C. F. Moore, V. Morozov, M. M. de Moura, M. G. Munhoz, J. M. Nelson, P. Nevski, V. A. Nikitin, L. V. Nogach, B. Norman, S. B. Nurushev, G. Odyniec, A. Ogawa, V. Okorokov, M. Oldenburg, D. Olson, G. Paic, S. U. Pandey, Y. Panebratsev, S. Y. Panitkin, A. I. Pavlinov, T. Pawlak, V. Perevoztchikov, W. Peryt, V. A Petrov, M. Planinic, J. Pluta, N. Porile, J. Porter, A. M. Poskanzer, E. Potrebenikova, D. Prindle, C. Pruneau, J. Putschke, G. Rai, G. Rakness, O. Ravel, R. L. Ray, S. V. Razin, D. Reichhold, J. G. Reid, F. Retiere, A. Ridiger, H. G. Ritter, J. B. Roberts, O. V. Rogachevski, J. L. Romero, A. Rose, C. Roy, V. Rykov, I. Sakrejda, S. Salur, J. Sandweiss, A. C. Saulys, I. Savin, J. Schambach, R. P. Scharenberg, N. Schmitz, L. S. Schroeder, A. Schüttauf, K. Schweda, J. Seger, D. Seliverstov, P. Seyboth, E. Shahaliev, K. E. Shestermanov, S. S. Shimanskii, V. S. Shvetcov, G. Skoro, N. Smirnov, R. Snellings, P. Sorensen, J. Sowinski, H. M. Spinka, B. Srivastava, E. J. Stephenson, R. Stock, A. Stolpovsky, M. Strikhanov, B. Stringfellow, C. Struck, A. A. P. Suaide, E. Sugarbaker, C. Suire, M. Šumbera, B. Surrow, T. J. M. Symons, A. Szanto de Toledo, P. Szarwas, A. Tai, J. Takahashi, A. H. Tang, J. H. Thomas, M. Thompson, V. Tikhomirov, M. Tokarev, M. B. Tonjes, T. A. Trainor, S. Trentalange, R. E. Tribble, V. Trofimov, O. Tsai, T. Ullrich, D. G. Underwood, G. Van Buren, A. M. VanderMolen, I. M. Vasilevski, A. N. Vasiliev, S. E. Vigdor, S. A. Voloshin, F. Wang, H. Ward, J. W. Watson, R. Wells, G. D. Westfall, C. Whitten, Jr., H. Wieman, R. Willson, S. W. Wissink, R. Witt, J. Wood, N. Xu, Z. Xu, A. E. Yakutin, E. Yamamoto, J. Yang, P. Yepes, V. I. Yurevich, Y. V. Zanevski, I. Zborovský, H. Zhang, W. M. Zhang, R. Zoulkarneev, and A. N. Zubarev (STAR Collaboration

    Elliptic flow from two- and four-particle correlations in Au + Au collisions at sqrt{s_{NN}} = 130 GeV

    Get PDF
    Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarelativistic nuclear collisions. Flow measurements also provide a means of distinguishing between hydrodynamic models and calculations which approach the low density (dilute gas) limit. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (non-flow correlations). Using data for Au + Au collisions at sqrt{s_{NN}} = 130 GeV from the STAR TPC, it is found that four-particle correlation analyses can reliably separate flow and non-flow correlation signals. The latter account for on average about 15% of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also corrected for the effect of flow variations within centrality bins. This effect is negligible for all but the most central bin, where the correction to the elliptic flow is about a factor of two. A simple new method for two-particle flow analysis based on scalar products is described. An analysis based on the distribution of the magnitude of the flow vector is also described.Comment: minor text change

    Disappearance of back-to-back high pTp_T hadron correlations in central Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    Azimuthal correlations for large transverse momentum charged hadrons have been measured over a wide pseudo-rapidity range and full azimuth in Au+Au and p+p collisions at sNN\sqrt{s_{NN}} = 200 GeV. The small-angle correlations observed in p+p collisions and at all centralities of Au+Au collisions are characteristic of hard-scattering processes already observed in elementary collisions. A strong back-to-back correlation exists for p+p and peripheral Au + Au. In contrast, the back-to-back correlations are reduced considerably in the most central Au+Au collisions, indicating substantial interaction as the hard-scattered partons or their fragmentation products traverse the medium.Comment: submitted to Phys. Rev. Let
    corecore