1,544 research outputs found

    Peculiarities of isotopic temperatures obtained from p+A collisions at 1 GeV

    Full text link
    Nuclear temperatures obtained from inclusive measurements of double isotopic yield ratios of fragments produced in 1 GeV p + A collisions amount to about 4 MeV nearly independent from the target mass.Comment: 4 pages, 4 figures, to be submitted to Eur. Phys. J.

    Atomic spectroscopy studies of short-lived isotopes and nuclear isomer separation with the ISOLDE RILIS

    Get PDF
    The Resonance Ionization Laser Ion Source (RILIS) at the ISOLDE on-line isotope separator is based on the selective excitation of atomic transitions by tunable laser radiation. Ion beams of isotopes of 20 elements have been produced using the RILIS setup. Together with the mass separator and a particle detection system it represents a tool for high-sensitive laser spectroscopy of short-lived isotopes. By applying narrow-bandwidth lasers for the RILIS one can study isotope shifts (IS) and hyperfine structure (HFS) of atomic optical transitions. Such measurements are capable of providing data on nuclear charge radii, spins and magnetic moments of exotic nuclides far from stability. Although the Doppler broadening of the optical absorption lines limits the resolution of the technique, the accuracy of the HFS measurements examined in experiments with stable Tl isotopes approaches a value of 100 MHz. Due to the hyperfine splitting of atomic lines the RILIS gives an opportunity to separate nuclear isomers. Isomer selectivity of the RILIS has been used in studies of short-lived Ag, Cu and Pb isotopes

    Shapes of the 192,190^{192,190}Pb ground states from beta decay studies using the total absorption technique

    Full text link
    The beta decay of 192,190^{192,190}Pb has been studied using the total absorption technique at the ISOLDE(CERN) facility. The beta-decay strength deduced from the measurements, combined with QRPA theoretical calculations, allow us to infer that the ground states of the 192,190^{192,190}Pb isotopes are spherical. These results represent the first application of the shape determination method using the total absorption technique for heavy nuclei and in a region where there is considerable interest in nuclear shapes and shape effects

    Early onset of ground-state deformation in the neutron-deficient polonium isotopes

    Full text link
    In-source resonant ionization laser spectroscopy of the even-AA polonium isotopes 192210,216,218^{192-210,216,218}Po has been performed using the 6p37s6p^37s 5S2^5S_2 to 6p37p6p^37p 5P2^5P_2 (λ=843.38\lambda=843.38 nm) transition in the polonium atom (Po-I) at the CERN ISOLDE facility. The comparison of the measured isotope shifts in 200210^{200-210}Po with a previous data set allows to test for the first time recent large-scale atomic calculations that are essential to extract the changes in the mean-square charge radius of the atomic nucleus. When going to lighter masses, a surprisingly large and early departure from sphericity is observed, which is only partly reproduced by Beyond Mean Field calculations.Comment: As submitted to PR

    Coulomb excitation of 73Ga

    Full text link
    The B(E2; Ii -> If) values for transitions in 71Ga and 73Ga were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of 71,73Ga at the REX-ISOLDE on-line isotope mass separator facility. The emitted gamma rays were detected by the MINIBALL-detector array and B(E2; Ii->If) values were obtained from the yields normalized to the known strength of the 2+ -> 0+ transition in the 120Sn target. The comparison of these new results with the data of less neutron-rich gallium isotopes shows a shift of the E2 collectivity towards lower excitation energy when adding neutrons beyond N = 40. This supports conclusions from previous studies of the gallium isotopes which indicated a structural change in this isotopical chain between N = 40 and N = 42. Combined with recent measurements from collinear laser spectroscopy showing a 1/2- spin and parity for the ground state, the extracted results revealed evidence for a 1/2-; 3/2- doublet near the ground state in 73 31Ga42 differing by at most 0.8 keV in energy

    Vector and Tensor Analyzing Powers of the H(d,gamma)He-3 capture reaction

    Full text link
    Precise measurements of the deuteron vector analyzing power Ayd and the tensor analyzing power Ayy of the H(d,gamma)He-3 capture reaction have been performed at deuteron energies of 29MeV and 45MeV. The data have been compared to theoretical state-of-the-art calculations available today. Due to the large sensitivity of polarization observables and the precision of the data light could be shed on small effects present in the dynamics of the reaction.Comment: 11 pages, 24 figures, submitted for publication to PRC, revised after referee proces

    β\beta-decay half-life of 70^{70}Kr: a bridge nuclide for the rp-process beyond A = 70

    Get PDF
    The β\beta-decay half-life of 70^{70}Kr has been measured for the first time at the ISOLDE PSB Facility at CERN. Mass separated 70^{70}Kr ions were produced by 1 GeV proton induced spallation reactions in a Nb foil. The measured half-life is 57(21) ms. This value is consistent with the half-life calculated assuming a pure Fermi decay, but is clearly lower than the value used in a recent rp-process reaction flow calculation. The result shows that the reaction flow via two-proton-capture of 68^{68}Se is 2.5 times faster than previously calculated assuming an astrophysical temperature of 1.5 GK and a density of 106^{6}g/cm3^{3}

    Magnetic moments of 68^{68}Cug,m^{g,m} and 70^{70}Cug,m1,m2^{g,m_{1},m_{2}} nuclei measured by in-source laser spectroscopy

    Get PDF
    We have obtained information on the atomic hyperfine splitting and, hence, on magnetic moments in neutron rich 68,70^{68, 70}Cu isotopes by scanning the frequency of the narrow-band laser of the first excitation step in the resonance ionization laser ion source. The deduced magnetic moments are μ(68\mu( ^{68}Cug^{g}, Iπ^{\pi} = 1+^+) = +2.48(2)(7)μN\mu_{N} ; μ(68\mu(^{68}Cum^{m}, Iπ^{\pi}=6^{-}) = +1.24(4)(6)μN\mu_{N} and μ(70\mu(^{70}Cum2^{m_{2}}, Iπ^{\pi}=1+^{+}) = +1.86(4)(6)μN\mu_{N} ; μ(70\mu(^{70}Cug^{g}, Iπ^{\pi}=6^{-}) = +1.50(7)(8)μN\mu_{N}. The results of the scans analysis point out on existence of a new isomer in 70^{70}Cum1^{m_{1}}. It's deduced magnetic moment is (-)3.50(7)(11)μN\mu_{N} that is in a good agreement with Iπ^{\pi}=3^{-} assignment. The method of in-source atomic spectroscopy, as well as the analysis of the obtained data, is described. The results are discussed in terms of single-particle configurations coupled to the 68^{68}Ni core
    corecore