6 research outputs found

    Regulation of TRPM8 channel activity by Src-mediated tyrosine phosphorylation

    Get PDF
    The transient receptor potential melastatin type 8 (TRPM8) receptor channel is expressed in primary afferent neurons where it is the main transducer of innocuous cold temperatures and also in a variety of tumors, where it is involved in progression and metastasis. Modulation of this channel by intracellular signaling pathways has therefore important clinical implications. We investigated the modulation of recombinant and natively expressed TRPM8 by the Src kinase, which is known to be involved in cancer pathophysiology and inflammation. Human TRPM8 expressed in HEK293T cells is constitutively tyrosine phosphorylated by Src which is expressed either heterologously or endogenously. Src action on TRPM8 potentiates its activity, as treatment with PP2, a selective Src kinase inhibitor, reduces both TRPM8 tyrosine phosphorylation and cold‐induced channel activation. RNA interference directed against the Src kinase diminished the extent of PP2‐induced functional downregulation of TRPM8, confirming that PP2 acts mainly through Src inhibition. Finally, the effect of PP2 on TRPM8 cold activation was reproduced in cultured rat dorsal root ganglion neurons, and this action was antagonized by the protein tyrosine phosphatase inhibitor pervanadate, confirming that TRPM8 activity is sensitive to the cellular balance between tyrosine kinases and phosphatases. This positive modulation of TRPM8 by Src kinase may be relevant for inflammatory pain and cancer signaling

    Role of 5‐HT1A and 5‐HT3 receptors in serotonergic activation of sensory neurons in relation to itch and pain behavior in the rat

    No full text
    Serotonin (5-hydroxytryptamine, 5-HT) released by platelets, mast cells, and immunocytes is a potent inflammatory mediator which modulates pain and itch sensing in the peripheral nervous system. The serotonergic receptors expressed by primary afferent neurons involved in these sensory functions are not fully identified and appear to be to a large extent species dependent. Moreover, the mechanisms through which 5-HT receptor activation is coupled to changes in neuronal excitability have not been completely revealed. Using a combination of in vitro (calcium and voltage imaging and patch-clamp) and in vivo behavioral methods, we used both male and female Wistar rats to provide evidence for the involvement of two 5-HT receptor subtypes, 5-HT1A and 5-HT3, in mediating the sustained and transient effects, respectively, of 5-HT on rat primary afferent neurons involved in pain and itch processing. In addition, our results are consistent with a model in which sustained serotonergic responses triggered via the 5-HT1A receptor are due to closure of background potassium channels, followed by membrane depolarization and action potentials, during which the activation of voltage-gated calcium channels leads to calcium entry. Our results may provide a better understanding of mammalian serotonergic itch signaling

    Systemic desensitization through TRPA1 channels by capsazepine and mustard oil - a novel strategy against inflammation and pain

    No full text
    We demonstrate a novel dual strategy against inflammation and pain through body-wide desensitization of nociceptors via TRPA1. Attenuation of experimental colitis by capsazepine (CPZ) has long been attributed to its antagonistic action on TRPV1 and associated inhibition of neurogenic inflammation. In contrast, we found that CPZ exerts its anti-inflammatory effects via profound desensitization of TRPA1. Micromolar CPZ induced calcium influx in isolated dorsal root ganglion (DRG) neurons from wild-type (WT) but not TRPA1-deficient mice. CPZ-induced calcium transients in human TRPA1-expressing HEK293t cells were blocked by the selective TRPA1 antagonists HC 030031 and A967079 and involved three cysteine residues in the N-terminal domain. Intriguingly, both colonic enemas and drinking water with CPZ led to profound systemic hypoalgesia in WT and TRPV1−/− but not TRPA1−/− mice. These findings may guide the development of a novel class of disease-modifying drugs with anti-inflammatory and anti-nociceptive effects

    Design, Fabrication and Characterization of a Low-Impedance 3D Electrode Array System for Neuro-Electrophysiology

    Get PDF
    Recent progress in patterned microelectrode manufacturing technology and microfluidics has opened the way to a large variety of cellular and molecular biosensor-based applications. In this extremely diverse and rapidly expanding landscape, silicon-based technologies occupy a special position, given their statute of mature, consolidated, and highly accessible areas of development. Within the present work we report microfabrication procedures and workflows for 3D patterned gold-plated microelectrode arrays (MEA) of different shapes (pyramidal, conical and high aspect ratio), and we provide a detailed characterization of their physical features during all the fabrication steps to have in the end a reliable technology. Moreover, the electrical performances of MEA silicon chips mounted on standardized connector boards via ultrasound wire-bonding have been tested using non-destructive electrochemical methods: linear sweep and cyclic voltammetry, impedance spectroscopy. Further, an experimental recording chamber package suitable for in vitro electrophysiology experiments has been realized using custom-design electronics for electrical stimulus delivery and local field potential recording, included in a complete electrophysiology setup, and the experimental structures have been tested on newborn rat hippocampal slices, yielding similar performance compared to commercially available MEA equipments
    corecore