112 research outputs found

    Identification of hematein as a novel inhibitor of protein kinase CK2 from a natural product library

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Casein kinase 2 (CK2) is dysregulated in various human cancers and is a promising target for cancer therapy. To date, there is no small molecular CK2 inhibitor in clinical trial yet. With the aim to identify novel CK2 inhibitors, we screened a natural product library.</p> <p>Methods</p> <p>We adopted cell-based proliferation and CK2 kinase assays to screen CK2 inhibitors from a natural compound library. Dose-dependent response of CK2 inhibitors <it>in vitro </it>was determined by a radioisotope kinase assay. Western blot analysis was used to evaluate down stream Akt phosphorylation and apoptosis. Apoptosis was also evaluated by annexin-V/propidium iodide (PI) labeling method using flow cytometry. Inhibition effects of CK2 inhibitors on the growth of cancer and normal cells were evaluated by cell proliferation and viability assays.</p> <p>Results</p> <p>Hematein was identified as a novel CK2 inhibitor that is highly selective among a panel of kinases. It appears to be an ATP non-competitive and partially reversible CK2 inhibitor with an IC<sub>50 </sub>value of 0.55 μM. In addition, hematein inhibited cancer cell growth partially through down-regulation of Akt phosphorylation and induced apoptosis in these cells. Furthermore, hematein exerted stronger inhibition effects on the growth of cancer cells than in normal cells.</p> <p>Conclusion</p> <p>In this study, we showed that hematein is a novel selective and cell permeable small molecule CK2 inhibitor. Hematein showed stronger growth inhibition effects to cancer cells when compared to normal cells. This compound may represent a promising class of CK2 inhibitors.</p

    Functional Polymorphism of the CK2α Intronless Gene Plays Oncogenic Roles in Lung Cancer

    Get PDF
    Protein kinase CK2 is frequently up-regulated in human cancers, although the mechanism of CK2 activation in cancer remains unknown. In this study, we investigated the role of the CK2α intronless gene (CSNK2A1P, a presumed CK2α pseudogene) in the pathogenesis of human cancers. We found evidence of amplification and over-expression of the CSNK2A1P gene in non- small cell lung cancer and leukemia cell lines and 25% of the lung cancer tissues studied. The mRNA expression levels correlated with the copy numbers of the CSNK2A1P gene. We also identified a novel polymorphic variant (398T/C, I133T) of the CSNK2A1P gene and showed that the 398T allele is selectively amplified over the 398C allele in 101 non-small cell lung cancer tissue samples compared to those in 48 normal controls (p = 0.013<0.05). We show for the first time CSNK2A1P protein expression in transfected human embryonic kidney 293T and mouse embryonic fibroblast NIH-3T3 cell lines. Both alleles are transforming in these cell lines, and the 398T allele appears to be more transforming than the 398C allele. Moreover, the 398T allele degrades PML tumor suppressor protein more efficiently than the 398C allele and shows a relatively stronger binding to PML. Knockdown of the CSNK2A1P gene expression with specific siRNA increased the PML protein level in lung cancer cells. We report, for the first time, that the CSNK2A1P gene is a functional proto-oncogene in human cancers and its functional polymorphism appears to degrade PML differentially in cancer cells. These results are consistent with an important role for the 398T allele of the CSNK2A1P in human lung cancer susceptibility

    IL-6 Stabilizes Twist and Enhances Tumor Cell Motility in Head and Neck Cancer Cells through Activation of Casein Kinase 2

    Get PDF
    BACKGROUND: Squamous cell carcinoma of the head and neck (SCCHN) is the seventh most common cancer worldwide. Unfortunately, the survival of patients with SCCHN has not improved in the last 40 years, and thus new targets for therapy are needed. Recently, elevations in serum level of interleukin 6 (IL-6) and expression of Twist in tumor samples were found to be associated with poor clinical outcomes in multiple types of cancer, including SCCHN. Although Twist has been proposed as a master regulator of epithelial-mesenchymal transition and metastasis in cancers, the mechanisms by which Twist levels are regulated post-translationally are not completely understood. Tumor progression is characterized by the involvement of cytokines and growth factors and Twist induction has been connected with a number of these signaling pathways including IL-6. Since many of the effects of IL-6 are mediated through activation of protein phosphorylation cascades, this implies that Twist expression must be under a tight control at the post-translational level in order to respond in a timely manner to external stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Our data show that IL-6 increases Twist expression via a transcription-independent mechanism in many SCCHN cell lines. Further investigation revealed that IL-6 stabilizes Twist in SCCHN cell lines through casein kinase 2 (CK2) phosphorylation of Twist residues S18 and S20, and that this phosphorylation inhibits degradation of Twist. Twist phosphorylation not only increases its stability but also enhances cell motility. Thus, post-translational modulation of Twist contributes to its tumor-promoting properties. CONCLUSIONS/SIGNIFICANCE: Our study shows Twist expression can be regulated at the post-translational level through phosphorylation by CK2, which increases Twist stability in response to IL-6 stimulation. Our findings not only provide novel mechanistic insights into post-translational regulation of Twist but also suggest that CK2 may be a viable therapeutic target in SCCHN

    Impact of the AHI1 Gene on the Vulnerability to Schizophrenia: A Case-Control Association Study

    Get PDF
    BackgroundThe Abelson helper integration-1 (AHI1) gene is required for both cerebellar and cortical development in humans. While the accelerated evolution of AHI1 in the human lineage indicates a role in cognitive (dys)function, a linkage scan in large pedigrees identified AHI1 as a positional candidate for schizophrenia. To further investigate the contribution of AHI1 to the susceptibility of schizophrenia, we evaluated the effect of AHI1 variation on the vulnerability to psychosis in two samples from Spain and Germany.Methodology/Principal Findings29 single-nucleotide polymorphisms (SNPs) located in a genomic region including the AHI1 gene were genotyped in two samples from Spain (280 patients with psychotic disorders; 348 controls) and Germany (247 patients with schizophrenic disorders; 360 controls). Allelic, genotypic and haplotype frequencies were compared between cases and controls in both samples separately, as well as in the combined sample. The effect of genotype on several psychopathological measures (BPRS, KGV, PANSS) assessed in a Spanish subsample was also evaluated. We found several significant associations in the Spanish sample. Particularly, rs7750586 and rs911507, both located upstream of the AHI1 coding region, were found to be associated with schizophrenia in the analysis of genotypic (p = 0.0033, and 0.031, respectively) and allelic frequencies (p = 0.001 in both cases). Moreover, several other risk and protective haplotypes were detected (0.006<p<0.036). Joint analysis also supported the association of rs7750586 and rs911507 with the risk for schizophrenia. The analysis of clinical measures also revealed an effect on symptom severity (minimum P value = 0.0037).Conclusions/SignificanceOur data support, in agreement with previous reports, an effect of AHI1 variation on the susceptibility to schizophrenia in central and southern European populations

    Therapeutic targeting of CK2 in acute and chronic leukemias

    Get PDF
    Phosphorylation can regulate almost every property of a protein and is involved in all fundamental cellular processes. Thus, proper regulation of phosphorylation events is critical to the homeostatic functions of cell signaling. Indeed, deregulation of signaling pathways underlies many human diseases, including cancer.[1] The importance of phosphorylation makes protein kinases and phosphatases promising therapeutic targets for a wide variety of disorders.[2] CK2, formerly known as casein kinase II, was discovered in 1954, [3] although only recently, and especially over the last two decades, it has become one of the most studied protein kinases, due to its ubiquity, pleiotropy and constitutive activity. In particular, appreciation of its pleiotropy has completely changed our vision of CK2 biology, from an ordinary cell homeostasis-maintaining enzyme to a master kinase potentially implicated in many human physiological and pathological events. CK2 is responsible for about 25% of the phosphoproteome,[4] as it catalyzes the phosphorylation of >300 substrates.[5] This partly explains the CK2 interconnected roles that underlie its involvement in many signaling pathways. However, CK2 prevalent roles are promotion of cell growth and suppression of apoptosis. Accordingly, several lines of evidence support the notion that CK2 is a key player in the pathogenesis of cancer. High levels of CK2 transcript and protein expression, as well as increased kinase activity are associated with the pathological functions of CK2 in a number of neoplasias.[6] It was only over the last decade, after extensive analyses in solid tumors, that basic and translational studies have provided evidence for a pivotal role of CK2 in driving the growth of different blood cancers as well, although the first report demonstrating increased CK2 expression in acute myelogenous leukemia (AML) dates back to 1985.[7] Since then, CK2 overexpression/activity has been demonstrated in other hematological malignancies, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and chronic myelogenous leukemia (CML). [8] With the notable exceptions of CML and pediatric ALL, many patients with leukemias still have a poor outcome, despite the development of protocols with optimized chemotherapy combinations. Insufficient response to first-line therapy and unsalvageable relapses present major therapeutic challenges. Moreover, chemotherapy, even if successful, could have deleterious long-term biological and psychological effects, especially in children.[9] Furthermore, CML patients can develop resistance to tyrosine kinase inhibitors (TKIs), while both primary chemoresistant and relapsed pediatric ALL cases still remain an unresolved issue.[9

    History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience

    Full text link

    Amyloidosis: pathogenesis and new therapeutic options.

    No full text
    The systemic amyloidoses are a group of complex diseases caused by tissue deposition of misfolded proteins that results in progressive organ damage. The most common type, immunoglobulin light chain amyloidosis (AL), is caused by clonal plasma cells that produce misfolded light chains. The purpose of this review is to provide up-to-date information on diagnosis and treatment options for AL amyloidosis. Early, accurate diagnosis is the key to effective therapy, and unequivocal identification of the amyloidogenic protein may require advanced technologies and expertise. Prognosis is dominated by the extent of cardiac involvement, and cardiac staging directs the choice of therapy. Treatment for AL amyloidosis is highly individualized, determined on the basis of age, organ dysfunction, and regimen toxicities, and should be guided by biomarkers of hematologic and cardiac response. Alkylator-based chemotherapy is effective in almost two thirds of patients. Novel agents are also active, and trials are ongoing to establish their optimal use. Treatment algorithms will continue to be refined through controlled trials. Advances in basic research have led to the identification of new drug targets and therapeutic approaches, which will be integrated with chemotherapy in the future. J Clin Oncol 29:1924-1933. (C) 2011 by American Society of Clinical Oncolog
    corecore