13 research outputs found

    DEFINING THE BREED STANDARDS AND BREEDING GOALS FOR DOMESTIC MOUNTAIN HORSE

    Get PDF
    Domestic mountain horse is a transpoundary breed present in many Balkan countries. According to the Low of Animal Production of R. of Macedonia from 2008, for every breed of domestic animal in our state is nessesery to create a separate breeding program. In 2013 in low of animal production the autohtonous breeds of equidaes are added two new varietes - domestic mountain horse and domestic donkey. Facing the obtained results from estimating the main morphological, reproductive and functional traits in 220 domestic mountain horses in central mountain part of Macedonia during 2015 and 2016, the current standards and breeding goals were defined for the next national breeding program of this breed. According to the fact that the domestic mountain horse is a metapopulation and transboundary breed of horse in almost all Balkan countries, it is a good recommendation to create a regional breeding program with flexible standards and breeding goals for this breed of horses for all Balkan countries together

    Overview of cattle diseases listed under category C, D or E in the animal health law for wich control programmes are in place within Europe

    Get PDF
    13 páginas, 5 figuras, 3 tablas.The COST action “Standardising output-based surveillance to control non-regulated diseases of cattle in the European Union (SOUND control),” aims to harmonise the results of surveillance and control programmes (CPs) for non-EU regulated cattle diseases to facilitate safe trade and improve overall control of cattle infectious diseases. In this paper we aimed to provide an overview on the diversity of control for these diseases in Europe. A non-EU regulated cattle disease was defined as an infectious disease of cattle with no or limited control at EU level, which is not included in the European Union Animal health law Categories A or B under Commission Implementing Regulation (EU) 2020/2002. A CP was defined as surveillance and/or intervention strategies designed to lower the incidence, prevalence, mortality or prove freedom from a specific disease in a region or country. Passive surveillance, and active surveillance of breeding bulls under Council Directive 88/407/EEC were not considered as CPs. A questionnaire was designed to obtain country-specific information about CPs for each disease. Animal health experts from 33 European countries completed the questionnaire. Overall, there are 23 diseases for which a CP exists in one or more of the countries studied. The diseases for which CPs exist in the highest number of countries are enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis, bovine viral diarrhoea and anthrax (CPs reported by between 16 and 31 countries). Every participating country has on average, 6 CPs (min–max: 1–13) in place. Most programmes are implemented at a national level (86%) and are applied to both dairy and non-dairy cattle (75%). Approximately one-third of the CPs are voluntary, and the funding structure is divided between government and private resources. Countries that have eradicated diseases like enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis and bovine viral diarrhoea have implemented CPs for other diseases to further improve the health status of cattle in their country. The control of non-EU regulated cattle diseases is very heterogenous in Europe. Therefore, the standardising of the outputs of these programmes to enable comparison represents a challenge.Peer reviewe

    Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe

    No full text
    We report a European wide assessment of the economic burden of gastrointestinal nematodes, Fasciola hepatica (common liver fluke) and Dictyocaulus viviparus (bovine lungworm) infections to the ruminant livestock industry. The economic impact of these parasitic helminth infections was estimated by a deterministic spreadsheet model as a function of the proportion of the ruminant population exposed to grazing, the infection frequency and intensity, the effect of the infection on animal productivity and mortality and anthelmintic treatment costs. In addition, we estimated the costs of anthelmintic resistant nematode infections and collected information on public research budgets addressing helminth infections in ruminant livestock. The epidemiologic and economic input data were collected from international databases and via expert opinion of the Working Group members of the European Co-operation in Science and Technology (COST) action COMbatting Anthelmintic Resistance in ruminants (COMBAR). In order to reflect the effects of uncertainty in the input data, low and high cost estimates were obtained by varying uncertain input data arbitrarily in both directions by 20 %. The combined annual cost [low estimate-high estimate] of the three helminth infections in 18 participating countries was estimated at € 1.8 billion [€ 1.0–2.7 billion]. Eighty-one percent of this cost was due to lost production and 19 % was attributed to treatment costs. The cost of gastrointestinal nematode infections with resistance against macrocyclic lactones was estimated to be € 38 million [€ 11–87 million] annually. The annual estimated costs of helminth infections per sector were € 941 million [€ 488 – 1442 million] in dairy cattle, € 423 million [€ 205–663 million] in beef cattle, € 151million [€ 90–213 million] in dairy sheep, € 206 million [€ 132–248 million] in meat sheep and € 86 million [€ 67–107 million] in dairy goats. Important data gaps were present in all phases of the calculations which lead to large uncertainties around the estimates. Accessibility of more granular animal population datasets at EU level, deeper knowledge of the effects of infection on production, levels of infection and livestock grazing exposure across Europe would make the largest contribution to improved burden assessments. The known current public investment in research on helminth control was 0.15 % of the estimated annual costs for the considered parasitic diseases. Our data suggest that the costs of enzootic helminth infections which usually occur at high prevalence annually in ruminants, are similar or higher than reported costs of epizootic diseases. Our data can support decision making in research and policy to mitigate the negative impacts of helminth infections and anthelmintic resistance in Europe, and provide a baseline against which to measure future changes

    Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe

    No full text
    We report a European wide assessment of the economic burden of gastrointestinal nematodes, Fasciola hepatica (common liver fluke) and Dictyocaulus viviparus (bovine lungworm) infections to the ruminant livestock industry. The economic impact of these parasitic helminth infections was estimated by a deterministic spreadsheet model as a function of the proportion of the ruminant population exposed to grazing, the infection frequency and intensity, the effect of the infection on animal productivity and mortality and anthelmintic treatment costs. In addition, we estimated the costs of anthelmintic resistant nematode infections and collected information on public research budgets addressing helminth infections in ruminant livestock. The epidemiologic and economic input data were collected from international databases and via expert opinion of the Working Group members of the European Co-operation in Science and Technology (COST) action COMbatting Anthelmintic Resistance in ruminants (COMBAR). In order to reflect the effects of uncertainty in the input data, low and high cost estimates were obtained by varying uncertain input data arbitrarily in both directions by 20 %. The combined annual cost [low estimate-high estimate] of the three helminth infections in 18 participating countries was estimated at € 1.8 billion [€ 1.0–2.7 billion]. Eighty-one percent of this cost was due to lost production and 19 % was attributed to treatment costs. The cost of gastrointestinal nematode infections with resistance against macrocyclic lactones was estimated to be € 38 million [€ 11–87 million] annually. The annual estimated costs of helminth infections per sector were € 941 million [€ 488 – 1442 million] in dairy cattle, € 423 million [€ 205–663 million] in beef cattle, € 151million [€ 90–213 million] in dairy sheep, € 206 million [€ 132–248 million] in meat sheep and € 86 million [€ 67–107 million] in dairy goats. Important data gaps were present in all phases of the calculations which lead to large uncertainties around the estimates. Accessibility of more granular animal population datasets at EU level, deeper knowledge of the effects of infection on production, levels of infection and livestock grazing exposure across Europe would make the largest contribution to improved burden assessments. The known current public investment in research on helminth control was 0.15 % of the estimated annual costs for the considered parasitic diseases. Our data suggest that the costs of enzootic helminth infections which usually occur at high prevalence annually in ruminants, are similar or higher than reported costs of epizootic diseases. Our data can support decision making in research and policy to mitigate the negative impacts of helminth infections and anthelmintic resistance in Europe, and provide a baseline against which to measure future changes

    A Qualitative Market Analysis Applied to Mini-FLOTAC and Fill-FLOTAC for Diagnosis of Helminth Infections in Ruminants

    No full text
    Helminth infections, mainly by gastrointestinal nematodes (GIN), are one of the main concerns for animal health, welfare and productivity in grazing ruminant livestock worldwide. The use of a sensitive, precise, accurate, low-cost, and easy-to-perform copromicroscopic technique is of pivotal importance to perform reliable fecal egg count (FEC) and fecal egg count reduction test (FECRT), in order to determine the need of anthelmintic treatment, but also anthelmintic efficacy or resistance. This approach is fundamental to a correct and efficient control of GIN. Unfortunately, in worldwide ruminant farm practice, repeated anthelmintic treatments are carried out, without prior diagnosis of infection, contributing to the spread of Anthelmintic Resistance (AR). Tackling this phenomenon, improving mainly the GIN diagnosis and AR status in farm animals, is a priority of the European COST Action “COMBAR—COMBatting Anthelmintic Resistance in Ruminants” and of the STAR-IDAZ International Research Consortium on Animal Health. One of the specific objectives of the COMBAR Working Group 1 (WG1) is to conduct an European market analysis of new diagnostics and develop a business plan for commercial test introduction, leveraging technical know-how of participants. Since the Mini-FLOTAC in combination with the Fill-FLOTAC may be considered a good candidate for a standardized FEC and FECRT in the laboratory, as well as directly in the field, the aim of this study was to conduct SWOT (Strength—Weaknesses—Opportunities—Threats) and PESTEL (Political, Economic, Social, Technological, Environmental, and Legal) analyses of these tools in 20 European countries involved in the COMBAR WG1, in order to identify the opportunities, barriers, and challenges that might affect the Mini-FLOTAC and Fill-FLOTAC commercialization in Europe

    Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe

    Get PDF
    12 páginas, 4 figuras, 4 tablas.We report a European wide assessment of the economic burden of gastrointestinal nematodes, Fasciola hepatica (common liver fluke) and Dictyocaulus viviparus (bovine lungworm) infections to the ruminant livestock industry. The economic impact of these parasitic helminth infections was estimated by a deterministic spreadsheet model as a function of the proportion of the ruminant population exposed to grazing, the infection frequency and intensity, the effect of the infection on animal productivity and mortality and anthelmintic treatment costs. In addition, we estimated the costs of anthelmintic resistant nematode infections and collected information on public research budgets addressing helminth infections in ruminant livestock. The epidemiologic and economic input data were collected from international databases and via expert opinion of the Working Group members of the European Co-operation in Science and Technology (COST) action COMbatting Anthelmintic Resistance in ruminants (COMBAR). In order to reflect the effects of uncertainty in the input data, low and high cost estimates were obtained by varying uncertain input data arbitrarily in both directions by 20 %. The combined annual cost [low estimate-high estimate] of the three helminth infections in 18 participating countries was estimated at € 1.8 billion [€ 1.0–2.7 billion]. Eighty-one percent of this cost was due to lost production and 19 % was attributed to treatment costs. The cost of gastrointestinal nematode infections with resistance against macrocyclic lactones was estimated to be € 38 million [€ 11–87 million] annually. The annual estimated costs of helminth infections per sector were € 941 million [€ 488 – 1442 million] in dairy cattle, € 423 million [€ 205–663 million] in beef cattle, € 151million [€ 90–213 million] in dairy sheep, € 206 million [€ 132–248 million] in meat sheep and € 86 million [€ 67–107 million] in dairy goats. Important data gaps were present in all phases of the calculations which lead to large uncertainties around the estimates. Accessibility of more granular animal population datasets at EU level, deeper knowledge of the effects of infection on production, levels of infection and livestock grazing exposure across Europe would make the largest contribution to improved burden assessments. The known current public investment in research on helminth control was 0.15 % of the estimated annual costs for the considered parasitic diseases. Our data suggest that the costs of enzootic helminth infections which usually occur at high prevalence annually in ruminants, are similar or higher than reported costs of epizootic diseases. Our data can support decision making in research and policy to mitigate the negative impacts of helminth infections and anthelmintic resistance in Europe, and provide a baseline against which to measure future changes.This article is based upon work from COST Action COMBAR CA16230, supported by COST (European Cooperation in Science and Technology) and from the Livestock helminth Research Alliance (LiHRA). HRV and ERM are supported by the BBSRC BUG (Building on the Genome) sLoLa project (grant ref: BB/M003949/1, and BB/ R010250/1). HRV is also supported by the University of Liverpool’s Institute of Infection and Global Health. MMV was funded by the Spanish “Ramón y Cajal” Programme, Ministry of Economy and Competitiveness (Ministerio de Economía y Competitividad; RYC-2015-18368)
    corecore