9 research outputs found

    Optimization of the VLS epitaxy of 4H-SiC semiconductor : Development of localized doping in 4H-SiC by VLS epitaxy and applications to SiC power devices

    No full text
    L'objectif du projet VELSIC a été de démontrer la faisabilité de jonctions p+/n- profondes dans le semiconducteur 4H-SiC, de haute qualité électrique, comprenant une zone p++ réalisée par un procédé original d'épitaxie localisée à basse température (1100 – 1200°C), en configuration VLS (Vapeur - Liquide - Solide). Cette technique innovante de dopage par épitaxie utilise le substrat de SiC mono cristallin comme un germe de croissance sur lequel un empilement enterré de Al - Si est porté à fusion pour constituer un bain liquide, lequel est alimenté en carbone par la phase gazeuse. Cette méthode se positionne comme une alternative avantageuse à l'implantation ionique, actuellement utilisée par tous les fabricants de composants en SiC, mais qui présente des limitations problématiques encore non résolues à ce jour. Les travaux de thèse ont exploré toutes les facettes du processus complet de fabrication de diodes de test, avec une attention particulière portée sur l'optimisation de la gravure de cuvettes dans le substrat SiC. Le cœur des travaux a été concentré sur l'optimisation de l'épitaxie VLS localisée. L'étude a confirmé la nécessité de limiter la vitesse de croissance vers 1 µm/h pour conserver une bonne cristallinité du matériau épitaxié. Elle a également mis en évidence l'action directe du champ électromagnétique radiofréquence sur la phase liquide, conduisant à une très forte influence du diamètre des cuvettes gravées sur l'épaisseur du SiC déposé. Un remplissage quasiment complet des cuvettes de 1 µm de profondeur à très fort dopage p++ a été démontré. À partir des couches VLS optimisées, des démonstrateurs de types diodes p+/n- ont été fabriqués. Sur les meilleurs échantillons, sans passivation ni protection périphérique, des tensions de seuil en régime direct (entre 2,5 et 3 V) ont, pour la première fois, été mesurées, sans recourir à un recuit haute température après épitaxie. Elles correspondent aux valeurs attendues pour une vraie jonction p-n sur 4H-SiC. Des densités de courant de plusieurs kA/cm2 ont également pu être injectées pour des tensions situées autour de 5 - 6 V. En régime de polarisation inverse, aucun claquage n'est observé jusqu'à 400 V et les densités de courant de fuite à faible champ électrique dans la gamme 10-100 nA/cm2 ont été mesurées. Toutes ces avancées si situent au niveau de l'état de l'art pour des composants SiC aussi simples, toutes techniques de dopage confonduesThe objective of the VELSIC project has been to demonstrate the feasibility of 1 µm deep p+/n- junctions with high electrical quality in 4H-SiC semiconductor, in which the p++ zone is implemented by an original low-temperature localized epitaxy process ( 1100 - 1200 °C ), performed in the VLS (Vapor - Liquid - Solid) configuration. This innovative epitaxy doping technique uses the monocrystalline SiC substrate as a crystal growth seed. On the substrate (0001-Si) surface, buried patterns of Al - Si stack are fused to form liquid islands which are fed with carbon by C3H8 in the gas phase. This method is investigated as a possible higher performance alternative to the ion implantation process, currently used by all manufacturers of SiC devices, but which still experiences problematic limitations that are yet unresolved to date. Although the main focus of the study has been set on the optimization of localized VLS epitaxy, our works have explored and optimized all the facets of the complete process of test diodes, from the etching of patterns in the SiC substrate up to the electrical I - V characterization of true pn diodes with ohmic contacts on both sides.Our results have confirmed the need to limit the growth rate down to 1 µm/h to maintain good crystallinity of the epitaxial material. It has also highlighted the direct action of the radiofrequency electromagnetic field on the liquid phase, leading to a very strong influence of the diameter of the etched patterns on the thickness of the deposited SiC. A nearly complete filling of the 1 µm deep trenches with very high p++ doping has been demonstrated. Using optimized VLS growth parameters, p+/n- diode demonstrators have been processed and tested. On the best samples, without passivation or peripheral protection, high direct-current threshold voltages, between 2.5 and 3 V, were measured for the first time without any high-temperature annealing after epitaxy. These threshold voltage values correspond to the expected values for a true p-n junction on 4H-SiC. Current densities of several kA/cm2 have also been injected at voltages around 5 - 6 V. Under reverse bias conditions, no breakdown is observed up to 400 V and low leakage current densities at low electric field, in the range 10 - 100 nA/cm2, have been measured. All these advances align with or exceed state-of-the-art results for such simple SiC devices, obtained using any doping techniqu

    Optimisation de l'épitaxie VLS du semiconducteur 4H-SiC : Réalisation de dopages localisés dans 4H-SiC par épitaxie VLS et application aux composants de puissance SiC

    No full text
    The objective of the VELSIC project has been to demonstrate the feasibility of 1 µm deep p+/n- junctions with high electrical quality in 4H-SiC semiconductor, in which the p++ zone is implemented by an original low-temperature localized epitaxy process ( 1100 - 1200 °C ), performed in the VLS (Vapor - Liquid - Solid) configuration. This innovative epitaxy doping technique uses the monocrystalline SiC substrate as a crystal growth seed. On the substrate (0001-Si) surface, buried patterns of Al - Si stack are fused to form liquid islands which are fed with carbon by C3H8 in the gas phase. This method is investigated as a possible higher performance alternative to the ion implantation process, currently used by all manufacturers of SiC devices, but which still experiences problematic limitations that are yet unresolved to date. Although the main focus of the study has been set on the optimization of localized VLS epitaxy, our works have explored and optimized all the facets of the complete process of test diodes, from the etching of patterns in the SiC substrate up to the electrical I - V characterization of true pn diodes with ohmic contacts on both sides.Our results have confirmed the need to limit the growth rate down to 1 µm/h to maintain good crystallinity of the epitaxial material. It has also highlighted the direct action of the radiofrequency electromagnetic field on the liquid phase, leading to a very strong influence of the diameter of the etched patterns on the thickness of the deposited SiC. A nearly complete filling of the 1 µm deep trenches with very high p++ doping has been demonstrated. Using optimized VLS growth parameters, p+/n- diode demonstrators have been processed and tested. On the best samples, without passivation or peripheral protection, high direct-current threshold voltages, between 2.5 and 3 V, were measured for the first time without any high-temperature annealing after epitaxy. These threshold voltage values correspond to the expected values for a true p-n junction on 4H-SiC. Current densities of several kA/cm2 have also been injected at voltages around 5 - 6 V. Under reverse bias conditions, no breakdown is observed up to 400 V and low leakage current densities at low electric field, in the range 10 - 100 nA/cm2, have been measured. All these advances align with or exceed state-of-the-art results for such simple SiC devices, obtained using any doping techniqueL'objectif du projet VELSIC a été de démontrer la faisabilité de jonctions p+/n- profondes dans le semiconducteur 4H-SiC, de haute qualité électrique, comprenant une zone p++ réalisée par un procédé original d'épitaxie localisée à basse température (1100 – 1200°C), en configuration VLS (Vapeur - Liquide - Solide). Cette technique innovante de dopage par épitaxie utilise le substrat de SiC mono cristallin comme un germe de croissance sur lequel un empilement enterré de Al - Si est porté à fusion pour constituer un bain liquide, lequel est alimenté en carbone par la phase gazeuse. Cette méthode se positionne comme une alternative avantageuse à l'implantation ionique, actuellement utilisée par tous les fabricants de composants en SiC, mais qui présente des limitations problématiques encore non résolues à ce jour. Les travaux de thèse ont exploré toutes les facettes du processus complet de fabrication de diodes de test, avec une attention particulière portée sur l'optimisation de la gravure de cuvettes dans le substrat SiC. Le cœur des travaux a été concentré sur l'optimisation de l'épitaxie VLS localisée. L'étude a confirmé la nécessité de limiter la vitesse de croissance vers 1 µm/h pour conserver une bonne cristallinité du matériau épitaxié. Elle a également mis en évidence l'action directe du champ électromagnétique radiofréquence sur la phase liquide, conduisant à une très forte influence du diamètre des cuvettes gravées sur l'épaisseur du SiC déposé. Un remplissage quasiment complet des cuvettes de 1 µm de profondeur à très fort dopage p++ a été démontré. À partir des couches VLS optimisées, des démonstrateurs de types diodes p+/n- ont été fabriqués. Sur les meilleurs échantillons, sans passivation ni protection périphérique, des tensions de seuil en régime direct (entre 2,5 et 3 V) ont, pour la première fois, été mesurées, sans recourir à un recuit haute température après épitaxie. Elles correspondent aux valeurs attendues pour une vraie jonction p-n sur 4H-SiC. Des densités de courant de plusieurs kA/cm2 ont également pu être injectées pour des tensions situées autour de 5 - 6 V. En régime de polarisation inverse, aucun claquage n'est observé jusqu'à 400 V et les densités de courant de fuite à faible champ électrique dans la gamme 10-100 nA/cm2 ont été mesurées. Toutes ces avancées si situent au niveau de l'état de l'art pour des composants SiC aussi simples, toutes techniques de dopage confondue

    Localized VLS Epitaxy Process as a P-type Doping Alternative Technique for 4H-SiC P/N Junctions

    No full text
    International audienceAt present, the most popular technique for the localized P-type doping of 4H-SiC is Al ion implantation. The main drawbacks related to ion implantation are the limited activation of the Al as acceptors and the high amount of residual crystal damages, even after annealing at very high temperature [1]. In the last few years, Vapor-Liquid-Solid (VLS) selective epitaxy has been investigated as an alternative solution for the localized p-type doping of 4H-SiC [2]. One interesting result obtained with this new method has been the reduction of the resistivity of ohmic contacts on p-type 4H-SiC, for which specific resistance value as low as 1.3×10-6 Ω.cm 2 after annealing, and ohmicity before contact annealing, have been demonstrated [3]. In the present work, we have optimized the experimental conditions of the VLS epitaxial growth, in order to obtain 4H-SiC P/N junctions. For the VLS process, the liquid phase is an AlSi melt and C 3 H 8 gas is the carbon precursor

    Optimization of VLS Growth Process for 4H-SiC P/N Junctions

    No full text
    International audienceP/N junctions have been fabricated with N+ commercial 4H-SiC substrate on which Vapor-Liquid-Solid (VLS) selective epitaxy was used to create a localized p-type doping. The influence of the carrier gas nature (argon or hydrogen) has been investigated in terms of quality of the growth morphology, deposit thickness and electrical behavior of the P/N junction. Distinct results have been observed with a clear improvement when using VLS selective epitaxy under hydrogen

    Very High Sustainable Forward Current Densities on 4H-SiC p-n Junctions Formed by VLS Localized Epitaxy of Heavily Al-Doped p<sup>++</sup> Emitters

    No full text
    International audienceThis study deals with the electrical characterization of PiN diodes fabricated on a 4°off-axis 4H-SiC n+ substrate with a n- epilayer (1×1016 cm-3 / 10 µm). Optimized p++ epitaxial areas were grown by Vapour-Liquid-Solid (VLS) transport to form p+ emitters localized in etched wells with 1 µm depth. Incorporated Al level in the VLS p++ zones was checked by SIMS (Secondary Ion Mass Spectroscopy), and the doping level was found in the range of 1-3×1020 at.cm-3. Electrical characterizations were performed on these PiN diodes, with 800 nm deposit of aluminium as ohmic contact on p-type SiC. Electrical measurements show a bipolar behaviour, and very high sustainable forward current densities ≥ 3 kA.cm-2, preserving a low leakage current density in reverse bias. These measurements were obtained on structures without any passivation and no edge termination

    P-Type Doping of 4H-SiC for Integrated Bipolar and Unipolar Devices

    No full text
    International audienceP-type 4H-SiC layers formed by ion implantation need high temperature processes, which generate surface roughness, losing and incomplete activation of dopants. Due to dopant redistribution and channeling effect, it is difficult to predict the depth of the formed junctions. Vapor-Liquid-Solid (VLS) selective epitaxy is an alternative method to obtain locally highly doped p-type layers in the 1020 cm-3 range or more. The depth of this p-type layers or regions is accurately controlled by the initial Reactive-Ion-Etching (RIE) of the SiC. Lateral Junction Field Effect Transistor (JFET) devices are fabricated by integrating p-type layers created by Al ion implantation or VLS growth. The p-type VLS layers improve the access resistances on the electrodes of the fabricated devices

    Single-mode high frequency LiNbO 3 Film Bulk Acoustic Resonator

    No full text
    International audienceIn this paper, Y+163°-cut LiNbO 3 (LNO) Film Bulk Acoustic Resonators (FBAR) with patterned bottom electrodes (AlSi or W) and a sacrificial layer cavity have been fabricated using a layer transfer process (4-inch). Unlike previous work based on films oriented towards the X axis [1], the Y+163° orientation provides a single resonance at 2.2 GHz, with an effective electromechanical coupling factor (k t 2 ) of 26 %. Thanks to this single mode behavior and to the energy trapping induced by the heavy tungsten electrodes, the quality factor at antiresonance (Q a ) is increased to 600. Moreover a Temperature Coefficient of Frequency (TCF) of -45 ppm/°C is obtained. This demonstrates a significant improvement towards introducing LiNbO 3 as an alternative to AlN in Bulk Acoustic Wave (BAW) filters for the new generation of RF filters
    corecore