10,213 research outputs found
Implementation of robust image artifact removal in SWarp through clipped mean stacking
We implement an algorithm for detecting and removing artifacts from
astronomical images by means of outlier rejection during stacking. Our method
is capable of addressing both small, highly significant artifacts such as
cosmic rays and, by applying a filtering technique to generate single frame
masks, larger area but lower surface brightness features such as secondary
(ghost) images of bright stars. In contrast to the common method of building a
median stack, the clipped or outlier-filtered mean stacked point-spread
function (PSF) is a linear combination of the single frame PSFs as long as the
latter are moderately homogeneous, a property of great importance for weak
lensing shape measurement or model fitting photometry. In addition, it has
superior noise properties, allowing a significant reduction in exposure time
compared to median stacking. We make publicly available a modified version of
SWarp that implements clipped mean stacking and software to generate single
frame masks from the list of outlier pixels.Comment: PASP accepted; software for download at
http://www.usm.uni-muenchen.de/~dgruen
The sizes of galaxy halos in galaxy cluster Abell 1689
The multiple images observed in galaxy cluster Abell 1689 provide strong
constraints not only on the mass distribution of the cluster but also on the
ensemble properties of the cluster galaxies. Using parametric strong lensing
models for the cluster, and by assuming well motivated scaling laws between the
truncation radius s and the velocity dispersion sigma of a cluster galaxy we
are able to derive sizes of the dark matter halos of cluster galaxies.
For the scaling law expected for galaxies in the cluster environment (s
propto sigma), we obtain s = 64^{+15}_{-14} (sigma / 220 km/s) kpc. For the
scaling law used for galaxies in the field with s propto sigma^2 we find s =
66^{+18}_{-16} (sigma / 220 km/s)^2 kpc. Compared to halos of field galaxies,
the cluster galaxy halos in Abell 1689 are strongly truncated.Comment: 12 pages, 4 figures. Accepted for publication in the Ap
A Comparison of Simple Mass Estimators for Galaxy Clusters
High-resolution N-body simulations are used to investigate systematic trends
in the mass profiles and total masses of clusters as derived from 3 simple
estimators: (1) the weak gravitational lensing shear field under the assumption
of an isothermal cluster potential, (2) the dynamical mass obtained from the
measured velocity dispersion under the assumption of an isothermal cluster
potential, and (3) the classical virial estimator. The clusters consist of
order 2.5e+05 particles of mass m_p \simeq 10^{10} \Msun, have triaxial mass
distributions, and significant substructure exists within their virial radii.
Not surprisingly, the level of agreement between the mass profiles obtained
from the various estimators and the actual mass profiles is found to be
scale-dependent.
The virial estimator yields a good measurement of the total cluster mass,
though it is systematically underestimated by of order 10%. This result
suggests that, at least in the limit of ideal data, the virial estimator is
quite robust to deviations from pure spherical symmetry and the presence of
substructure. The dynamical mass estimate based upon a measurement of the
cluster velocity dispersion and an assumption of an isothermal potential yields
a poor measurement of the total mass. The weak lensing estimate yields a very
good measurement of the total mass, provided the mean shear used to determine
the equivalent cluster velocity dispersion is computed from an average of the
lensing signal over the entire cluster (i.e. the mean shear is computed
interior to the virial radius). [abridged]Comment: Accepted for publication in The Astrophysical Journal. Complete
paper, including 3 large colour figures can also be obtained from
http://bu-ast.bu.edu/~brainerd/preprints
Reconstruction methods — P‾ANDA focussing-light guide disc DIRC
The Focussing-Lightguide Disc DIRC will provide crucial Particle Identification (PID) information for the P‾ANDA experiment at FAIR, GSI. This detector presents a challenging environment for reconstruction due to the complexity of the expected hit patterns and the operating conditions of the P‾ANDA experiment. A discussion of possible methods to reconstruct PID from this detector is given here. Reconstruction software is currently under development
The bar PANDA focussing-lightguide disc DIRC
bar PANDA will be a fixed target experiment internal to the HESR antiproton storage ring at the future FAIR complex. The ANDA detector requires excellent particle-identification capabilities in order to achieve its scientific potential. Cherenkov counters employing the DIRC principle were chosen as PID detectors for the Target Spectrometer. The proposed Focussing-Lightguide Disc DIRC will cover the forward part of the Target Spectrometer acceptance in the angular range between 5° and 22°. Its design includes a novel approach to mitigate dispersion effects in the solid radiator of a DIRC counter using optical elements. The dispersion correction will enable the Focussing-Lightguide Disc DIRC to provide pion-kaon identification for momenta well above 3.5 GeV/c
Weak Lensing Analysis of the z~0.8 cluster CL 0152-1357 with the Advanced Camera for Surveys
We present a weak lensing analysis of the X-ray luminous cluster CL 0152-1357
at z~0.84 using HST/ACS observations. The unparalleled resolution and
sensitivity of ACS enable us to measure weakly distorted, faint background
galaxies to the extent that the number density reaches ~175 arcmin^-2. The PSF
of ACS has a complicated shape that also varies across the field. We construct
a PSF model for ACS from an extensive investigation of 47 Tuc stars in a
modestly crowded region. We show that this model PSF excellently describes the
PSF variation pattern in the cluster observation when a slight adjustment of
ellipticity is applied. The high number density of source galaxies and the
accurate removal of the PSF effect through moment-based deconvolution allow us
to restore the dark matter distribution of the cluster in great detail. The
direct comparison of the mass map with the X-ray morphology from Chandra
observations shows that the two peaks of intracluster medium traced by X-ray
emission are lagging behind the corresponding dark matter clumps, indicative of
an on-going merger. The overall mass profile of the cluster can be well
described by an NFW profile with a scale radius of r_s =309+-45 kpc and a
concentration parameter of c=3.7+-0.5. The mass estimates from the lensing
analysis are consistent with those from X-ray and Sunyaev-Zeldovich analyses.
The predicted velocity dispersion is also in good agreement with the
spectroscopic measurement from VLT observations. In the adopted WMAP cosmology,
the total projected mass and the mass-to-light ratio within 1 Mpc are estimated
to be 4.92+-0.44 10^14 solar mass and 95+-8 solar mass/solar luminosity,
respectively.Comment: Accepted for publication in Astrophysical Journal. 58 pages, 26
figures. Figures have been degraded to meet size limit; a higher resolution
version available at http://acs.pha.jhu.edu/~mkjee/ms_cl0152.pd
Rank 3 permutation characters and maximal subgroups
In this paper we classify all maximal subgroups M of a nearly simple
primitive rank 3 group G of type L=Omega_{2m+1}(3), m > 3; acting on an L-orbit
E of non-singular points of the natural module for L such that 1_P^G <=1_M^G
where P is a stabilizer of a point in E. This result has an application to the
study of minimal genera of algebraic curves which admit group actions.Comment: 41 pages, to appear in Forum Mathematicu
Recommended from our members
Multi-line Adaptive Perimetry (MAP): A New Procedure for Quantifying Visual Field Integrity for Rapid Assessment of Macular Diseases.
PurposeIn order to monitor visual defects associated with macular degeneration (MD), we present a new psychophysical assessment called multiline adaptive perimetry (MAP) that measures visual field integrity by simultaneously estimating regions associated with perceptual distortions (metamorphopsia) and visual sensitivity loss (scotoma).MethodsWe first ran simulations of MAP with a computerized model of a human observer to determine optimal test design characteristics. In experiment 1, predictions of the model were assessed by simulating metamorphopsia with an eye-tracking device with 20 healthy vision participants. In experiment 2, eight patients (16 eyes) with macular disease completed two MAP assessments separated by about 12 weeks, while a subset (10 eyes) also completed repeated Macular Integrity Assessment (MAIA) microperimetry and Amsler grid exams.ResultsResults revealed strong repeatability of MAP and high accuracy, sensitivity, and specificity (0.89, 0.81, and 0.90, respectively) in classifying patient eyes with severe visual impairment. We also found a significant relationship in terms of the spatial patterns of performance across visual field loci derived from MAP and MAIA microperimetry. However, there was a lack of correspondence between MAP and subjective Amsler grid reports in isolating perceptually distorted regions.ConclusionsThese results highlight the validity and efficacy of MAP in producing quantitative maps of visual field disturbances, including simultaneous mapping of metamorphopsia and sensitivity impairment.Translational relevanceFuture work will be needed to assess applicability of this examination for potential early detection of MD symptoms and/or portable assessment on a home device or computer
HST/ACS weak lensing analysis of the galaxy cluster RDCS 1252.9-2927 at z=1.24
We present a weak lensing analysis of one of the most distant massive galaxy
cluster known, RDCS 1252.9-2927 at z=1.24, using deep images from the Advanced
Camera for Survey (ACS) on board the Hubble Space Telescope (HST). By taking
advantage of the depth and of the angular resolution of the ACS images, we
detect for the first time at z>1 a clear weak lensing signal in both the i
(F775W) and z (F850LP) filters. We measure a 5-\sigma signal in the i band and
a 3-\sigma signal in the shallower z band image. The two radial mass profiles
are found to be in very good agreement with each other, and provide a
measurement of the total mass of the cluster inside a 1Mpc radius of M(<1Mpc) =
(8.0 +/- 1.3) x 10^14 M_\odot in the current cosmological concordance model h
=0.70, \Omega_m=0.3, \Omega_\Lambda=0.7, assuming a redshift distribution of
background galaxies as inferred from the Hubble Deep Fields surveys. A weak
lensing signal is detected out to the boundary of our field (3' radius,
corresponding to 1.5Mpc at the cluster redshift). We detect a small offset
between the centroid of the weak lensing mass map and the brightest cluster
galaxy, and we discuss the possible origin of this discrepancy. The cumulative
weak lensing radial mass profile is found to be in good agreement with the
X-ray mass estimate based on Chandr and XMM-Newton observations, at least out
to R_500=0.5Mpc.Comment: 38 pages, ApJ in press. Full resolution images available at
http://www.eso.org/~prosati/RDCS1252/Lombardi_etal_accepted.pd
High-Redshift Galaxies: Their Predicted Size and Surface Brightness Distributions and Their Gravitational Lensing Probability
Direct observations of the first generation of luminous objects will likely
become feasible over the next decade. The advent of the Next Generation Space
Telescope (NGST) will allow imaging of numerous galaxies and mini-quasars at
redshifts z>5. We apply semi-analytic models of structure formation to estimate
the rate of multiple imaging of these sources by intervening gravitational
lenses. Popular CDM models for galaxy formation yield a lensing optical depth
of about 1% for sources at redshift 10. The expected slope of the luminosity
function of the early sources implies an additional magnification bias of about
5, bringing the fraction of lensed sources at z=10 to about 5%. We estimate the
angular size distribution of high-redshift disk galaxies and find that most of
them are more extended than the resolution limit of NGST, roughly 0.06
arcseconds. We also show that there is only a modest redshift evolution in the
mean surface brightness of galaxies at z>2. The expected increase by 1-2 orders
of magnitude in the number of resolved sources on the sky, due to observations
with NGST, will dramatically improve upon the statistical significance of
existing weak lensing measurements. We show that, despite this increase in the
density of sources, confusion noise from z>2 galaxies is expected to be small
for NGST observations.Comment: 27 pages, 8 PostScript figures (of which two are new), revised
version accepted for Ap
- …