In this paper we classify all maximal subgroups M of a nearly simple
primitive rank 3 group G of type L=Omega_{2m+1}(3), m > 3; acting on an L-orbit
E of non-singular points of the natural module for L such that 1_P^G <=1_M^G
where P is a stabilizer of a point in E. This result has an application to the
study of minimal genera of algebraic curves which admit group actions.Comment: 41 pages, to appear in Forum Mathematicu