10 research outputs found

    Inhibition of O-GlcNAc transferase activates tumor-suppressor gene expression in tamoxifen-resistant breast cancer cells

    Get PDF
    In this study, we probed the importance of O-GlcNAc transferase (OGT) activity for the survival of tamoxifen-sensitive (TamS) and tamoxifen-resistant (TamR) breast cancer cells. Tamoxifen is an antagonist of estrogen receptor (ERa), a transcription factor expressed in over 50% of breast cancers. ERa-positive breast cancers are successfully treated with tamoxifen; however, a significant number of patients develop tamoxifen-resistant disease. We show that in vitro development of tamoxifenresistance is associated with increased sensitivity to the OGT small molecule inhibitor OSMI-1. Global transcriptome profiling revealed that TamS cells adapt to OSMI-1 treatment by increasing the expression of histone genes. This is known to mediate chromatin compaction. In contrast, TamR cells respond to OGT inhibition by activating the unfolded protein response and by significantly increasing ERRFI1 expression. ERRFI1 is an endogenous inhibitor of ERBB-signaling, which is a known driver of tamoxifen-resistance. We show that ERRFI1 is selectively downregulated in ERa-positive breast cancers and breast cancers driven by ERBB2. This likely occurs via promoter methylation. Finally, we show that increased ERRFI1 expression is associated with extended survival in patients with ERa-positive tumors (p = 9.2e-8). In summary, we show that tamoxifen-resistance is associated with sensitivity to OSMI-1, and propose that this is explained in part through an epigenetic activation of the tumor-suppressor ERRFI1 in response to OSMI-1 treatment.Peer reviewe

    EMT-derived alterations in glutamine metabolism sensitize mesenchymal breast cells to mTOR inhibition

    Get PDF
    Author's accepted version (postprint).This is an Accepted Manuscript of an article published by American Association for Cancer Research in Molecular Cancer Research on 04/06/2021.Available online: https://mcr.aacrjournals.org/content/19/9/1546acceptedVersio

    O-GlcNAc Transferase Inhibition Differentially Affects Breast Cancer Subtypes

    Get PDF
    Post-translational modifcation of intracellular proteins with a single N-acetylglucosamine sugar (O-GlcNAcylation) regulates signaling, proliferation, metabolism and protein stability. In breast cancer, expression of the enzyme that catalyzes O-GlcNAcylation – O-GlcNAc-transferase (OGT), and the extent of protein O-GlcNAcylation, are upregulated in tumor tissue, and correlate with cancer progression. Here we compare the signifcance of O-GlcNAcylation in a panel of breast cancer cells of different phenotypes. We find a greater dependency on OGT among triple-negative breast cancer (TNBC) cell lines, which respond to OGT inhibition by undergoing cell cycle arrest and apoptosis. Searching for the cause of this response, we evaluate the changes in the proteome that occur after OGT inhibition or knock-down, employing a reverse-phase protein array (RPPA). We identify transcriptional repressor - hairy and enhancer of split-1 (HES1) - as a mediator of the OGT inhibition response in the TNBC cells. Inhibition of OGT as well as the loss of HES1 results in potent cytotoxicity and apoptosis. The study raises a possibility of using OGT inhibition to potentiate DNA damage in the TNBC cells

    O-GlcNAc Transferase Inhibition Differentially Affects Breast Cancer Subtypes

    Get PDF
    Post-translational modifcation of intracellular proteins with a single N-acetylglucosamine sugar (O-GlcNAcylation) regulates signaling, proliferation, metabolism and protein stability. In breast cancer, expression of the enzyme that catalyzes O-GlcNAcylation – O-GlcNAc-transferase (OGT), and the extent of protein O-GlcNAcylation, are upregulated in tumor tissue, and correlate with cancer progression. Here we compare the signifcance of O-GlcNAcylation in a panel of breast cancer cells of different phenotypes. We find a greater dependency on OGT among triple-negative breast cancer (TNBC) cell lines, which respond to OGT inhibition by undergoing cell cycle arrest and apoptosis. Searching for the cause of this response, we evaluate the changes in the proteome that occur after OGT inhibition or knock-down, employing a reverse-phase protein array (RPPA). We identify transcriptional repressor - hairy and enhancer of split-1 (HES1) - as a mediator of the OGT inhibition response in the TNBC cells. Inhibition of OGT as well as the loss of HES1 results in potent cytotoxicity and apoptosis. The study raises a possibility of using OGT inhibition to potentiate DNA damage in the TNBC cells

    Fibroblast-induced switching to the mesenchymal-like phenotype and PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors

    Get PDF
    The knowledge on how tumor-associated stroma influences efficacy of anti-cancer therapy just started to emerge. Here we show that lung fibroblasts reduce melanoma sensitivity to the BRAF inhibitor (BRAFi) vemurafenib only if the two cell types are in close proximity. In the presence of fibroblasts, the adjacent melanoma cells acquire de-differentiated mesenchymal-like phenotype. Upon treatment with BRAFi, such melanoma cells maintain high levels of phospho ribosomal protein S6 (pS6), i.e. active mTOR signaling, which is suppressed in the BRAFi sensitive cells without stromal contacts. Inhibitors of PI3K/mTOR in combination with BRAFi eradicate pS6high cell subpopulations and potentiate anti-cancer effects in melanoma protected by the fibroblasts. mTOR and BRAF co-inhibition also delayed the development of early-stage lung metastases in vivo. In conclusion, we demonstrate that upon influence from fibroblasts, melanoma cells undergo a phenotype switch to the mesenchymal state, which can support PI3K/mTOR signaling. The lost sensitivity to BRAFi in such cells can be overcome by co-targeting PI3K/mTOR. This knowledge could be explored for designing BRAFi combination therapies aiming to eliminate both stroma-protected and non-protected counterparts of metastases

    EMT-derived alterations in glutamine metabolism sensitize mesenchymal breast cells to mTOR inhibition

    Get PDF
    Epithelial-to-mesenchymal transition (EMT) is a fundamental developmental process with strong implications in cancer progression. Understanding the metabolic alterations associated with EMT may open new avenues of treatment and prevention. Here we used 13C carbon analogs of glucose and glutamine to examine differences in their utilization within central carbon and lipid metabolism following EMT in breast epithelial cell lines. We found that there are inherent differences in metabolic profiles before and after EMT. We observed EMT-dependent re-routing of the TCA-cycle, characterized by increased mitochondrial IDH2-mediated reductive carboxylation of glutamine to lipid biosynthesis with a concomitant lowering of glycolytic rates and glutamine-dependent glutathione (GSH) generation. Using weighted correlation network analysis, we identified cancer drugs whose efficacy against the NCI-60 Human Tumor Cell Line panel is significantly associated with GSH abundance and confirmed these in vitro. We report that EMT-linked alterations in GSH synthesis modulate the sensitivity of breast epithelial cells to mTOR inhibitors

    Stroma-induced phenotypic plasticity offers phenotype-specific targeting to improve melanoma treatment

    Get PDF
    Cancer cells’ phenotypic plasticity, promoted by stromal cells, contributes to intra-tumoral heterogeneity and affects response to therapy. We have disclosed an association between fibroblast-stimulated phenotype switching and resistance to the clinically used BRAF inhibitor (BRAFi) vemurafenib in malignant melanoma, revealing a challenge in targeting the fibroblast-induced phenotype. Here we compared molecular features and drug sensitivity in melanoma cells grown as co-cultures with fibroblasts versus mono-cultures. In the presence of fibroblasts, melanoma cells switched to the dedifferentiated, mesenchymal-like, inflammatory phenotype that showed reduced sensitivity to the most of 275 tested cancer drugs. Fibroblasts, however, sensitized melanoma cells to PI3K inhibitors (PI3Ki) and particularly the inhibitor of GSK3, AR-A014418 (GSK3i), that showed superior efficacy in co-cultures. The proteome changes induced by the BRAFi+GSK3i combination mimicked changes induced by BRAFi in mono-cultures, and GSK3i in co-cultures. This suggests that the single drug drives the response to the combination treatment, depending on fibroblast presence or absence, consequently, phenotype. We propose that the BRAFi and GSK3i (or PI3Ki) combination exemplifies phenotype-specific combinatorial treatment that should be beneficial in phenotypically heterogeneous tumors rich in stromal interactions

    "Stroma-induced phenotypic plasticity offers phenotype-specific targeting to improve melanoma treatment".

    Get PDF
    Cancer cells' phenotypic plasticity, promoted by stromal cells, contributes to intra-tumoral heterogeneity and affects response to therapy. We have disclosed an association between fibroblast-stimulated phenotype switching and resistance to the clinically used BRAF inhibitor (BRAFi) vemurafenib in malignant melanoma, revealing a challenge in targeting the fibroblast-induced phenotype. Here we compared molecular features and drug sensitivity in melanoma cells grown as co-cultures with fibroblasts versus mono-cultures. In the presence of fibroblasts, melanoma cells switched to the dedifferentiated, mesenchymal-like, inflammatory phenotype that showed reduced sensitivity to the most of 275 tested cancer drugs. Fibroblasts, however, sensitized melanoma cells to PI3K inhibitors (PI3Ki) and particularly the inhibitor of GSK3, AR-A014418 (GSK3i), that showed superior efficacy in co-cultures. The proteome changes induced by the BRAFi+GSK3i combination mimicked changes induced by BRAFi in mono-cultures, and GSK3i in co-cultures. This suggests that the single drug drives the response to the combination treatment, depending on fibroblast presence or absence, consequently, phenotype. We propose that the BRAFi and GSK3i (or PI3Ki) combination exemplifies phenotype-specific combinatorial treatment that should be beneficial in phenotypically heterogeneous tumors rich in stromal interactions
    corecore