2,357 research outputs found

    Stokes-vector evolution in a weakly anisotropic inhomogeneous medium

    Full text link
    Equation for evolution of the four-component Stokes vector in weakly anisotropic and smoothly inhomogeneous media is derived on the basis of quasi-isotropic approximation of the geometrical optics method, which provides consequent asymptotic solution of Maxwell equations. Our equation generalizes previous results, obtained for the normal propagation of electromagnetic waves in stratified media. It is valid for curvilinear rays with torsion and is capable to describe normal modes conversion in the inhomogeneous media. Remarkably, evolution of the Stokes vector is described by the Bargmann-Michel-Telegdi equation for relativistic spin precession, whereas the equation for the three-component Stokes vector resembles the Landau-Lifshitz equation for spin precession in ferromegnetic systems. General theory is applied for analysis of polarization evolution in a magnetized plasma. We also emphasize fundamental features of the non-Abelian polarization evolution in anisotropic inhomogeneous media and illustrate them by simple examples.Comment: 16 pages, 3 figures, to appear in J. Opt. Soc. Am.

    Levi umbilical surfaces in complex space

    Full text link
    We define a complex connection on a real hypersurface of \C^{n+1} which is naturally inherited from the ambient space. Using a system of Codazzi-type equations, we classify connected real hypersurfaces in \C^{n+1}, n2n\ge 2, which are Levi umbilical and have non zero constant Levi curvature. It turns out that such surfaces are contained either in a sphere or in the boundary of a complex tube domain with spherical section.Comment: 18 page

    Photoinduced Changes of Reflectivity in Single Crystals of YBa2Cu3O6.5 (Ortho II)

    Full text link
    We report measurements of the photoinduced change in reflectivity of an untwinned single crystal of YBa2Cu3O6.5 in the ortho II structure. The decay rate of the transient change in reflectivity is found to decrease rapidly with decreasing temperature and, below Tc, with decreasing laser intensity. We interpret the decay as a process of thermalization of antinodal quasiparticles, whose rate is determined by an inelastic scattering rate of quasiparticle pairs.Comment: 4 pages, 4 figure

    The Finite Field Kakeya Problem

    Full text link
    A Besicovitch set in AG(n,q) is a set of points containing a line in every direction. The Kakeya problem is to determine the minimal size of such a set. We solve the Kakeya problem in the plane, and substantially improve the known bounds for n greater than 4.Comment: 13 page

    Mixing by polymers: experimental test of decay regime of mixing

    Full text link
    By using high molecular weight fluorescent passive tracers with different diffusion coefficients and by changing the fluid velocity we study dependence of a characteristic mixing length on the Peclet number, PePe, which controls the mixing efficiency. The mixing length is found to be related to PePe by a power law, LmixPe0.26±0.01L_{mix}\propto Pe^{0.26\pm 0.01}, and increases faster than expected for an unbounded chaotic flow. Role of the boundaries in the mixing length abnormal growth is clarified. The experimental findings are in a good quantitative agreement with the recent theoretical predictions.Comment: 4 pages,5 figures. accepted for publication in PR

    Monte-Carlo simulation of events with Drell-Yan lepton pairs from antiproton-proton collisions

    Full text link
    The complete knowledge of the nucleon spin structure at leading twist requires also addressing the transverse spin distribution of quarks, or transversity, which is yet unexplored because of its chiral-odd nature. Transversity can be best extracted from single-spin asymmetries in fully polarized Drell-Yan processes with antiprotons, where valence contributions are involved anyway. Alternatively, in single-polarized Drell-Yan the transversity happens convoluted with another chiral-odd function, which is likely to be responsible for the well known (and yet unexplained) violation of the Lam-Tung sum rule in the corresponding unpolarized cross section. We present Monte-Carlo simulations for the unpolarized and single-polarized Drell-Yan pˉp()μ+μX\bar{p} p^{(\uparrow)} \to \mu^+ \mu^- X at different center-of-mass energies in both configurations where the antiproton beam hits a fixed proton target or it collides on another proton beam. The goal is to estimate the minimum number of events needed to extract the above chiral-odd distributions from future measurements at the HESR ring at GSI. It is important to study the feasibility of such experiments at HESR in order to demonstrate that interesting spin physics can be explored already using unpolarized antiprotons.Comment: Deeply revised text with improved discussion of kinematics and results; added one table; 12 figures. Accepted for publication in Phys. Rev.

    Free-energy transition in a gas of non-interacting nonlinear wave-particles

    Full text link
    We investigate the dynamics of a gas of non-interacting particle-like soliton waves, demonstrating that phase transitions originate from their collective behavior. This is predicted by solving exactly the nonlinear equations and by employing methods of the statistical mechanics of chaos. In particular, we show that a suitable free energy undergoes a metamorphosis as the input excitation is increased, thereby developing a first order phase transition whose measurable manifestation is the formation of shock waves. This demonstrates that even the simplest phase-space dynamics, involving independent (uncoupled) degrees of freedom, can sustain critical phenomena.Comment: 4 pages, 3 figure

    On Binary Matroid Minors and Applications to Data Storage over Small Fields

    Full text link
    Locally repairable codes for distributed storage systems have gained a lot of interest recently, and various constructions can be found in the literature. However, most of the constructions result in either large field sizes and hence too high computational complexity for practical implementation, or in low rates translating into waste of the available storage space. In this paper we address this issue by developing theory towards code existence and design over a given field. This is done via exploiting recently established connections between linear locally repairable codes and matroids, and using matroid-theoretic characterisations of linearity over small fields. In particular, nonexistence can be shown by finding certain forbidden uniform minors within the lattice of cyclic flats. It is shown that the lattice of cyclic flats of binary matroids have additional structure that significantly restricts the possible locality properties of F2\mathbb{F}_{2}-linear storage codes. Moreover, a collection of criteria for detecting uniform minors from the lattice of cyclic flats of a given matroid is given, which is interesting in its own right.Comment: 14 pages, 2 figure

    q-breathers in Discrete Nonlinear Schroedinger lattices

    Full text link
    qq-breathers are exact time-periodic solutions of extended nonlinear systems continued from the normal modes of the corresponding linearized system. They are localized in the space of normal modes. The existence of these solutions in a weakly anharmonic atomic chain explained essential features of the Fermi-Pasta-Ulam (FPU) paradox. We study qq-breathers in one- two- and three-dimensional discrete nonlinear Sch\"{o}dinger (DNLS) lattices -- theoretical playgrounds for light propagation in nonlinear optical waveguide networks, and the dynamics of cold atoms in optical lattices. We prove the existence of these solutions for weak nonlinearity. We find that the localization of qq-breathers is controlled by a single parameter which depends on the norm density, nonlinearity strength and seed wave vector. At a critical value of that parameter qq-breathers delocalize via resonances, signaling a breakdown of the normal mode picture and a transition into strong mode-mode interaction regime. In particular this breakdown takes place at one of the edges of the normal mode spectrum, and in a singular way also in the center of that spectrum. A stability analysis of qq-breathers supplements these findings. For three-dimensional lattices, we find qq-breather vortices, which violate time reversal symmetry and generate a vortex ring flow of energy in normal mode space.Comment: 19 pages, 9 figure
    corecore