17 research outputs found

    Comparative behavioral ecotoxicology of Inland Silverside larvae exposed to pyrethroids across a salinity gradient

    Get PDF
    Pyrethroids, a class of commonly used insecticides, are frequently detected in aquatic environments, including estuaries. The influence that salinity has on organism physiology and the partitioning of hydrophobic chemicals, such as pyrethroids, has driven interest in how toxicity changes in saltwater compared to freshwater. Early life exposures in fish to pyrethroids cause toxicity at environmentally relevant concentrations, which can alter behavior. Behavior is a highly sensitive endpoint that influences overall organism fitness and can be used to detect toxicity of environmentally relevant concentrations of aquatic pollutants. Inland Silversides (Menidia beryllina), a commonly used euryhaline model fish species, were exposed from 5 days post fertilization (~1-day pre-hatch) for 96 h to six pyrethroids: bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, esfenvalerate and permethrin. Exposures were conducted at three salinities relevant to brackish, estuarine habitat (0.5, 2, and 6 PSU) and across 3 concentrations, either 0.1, 1, 10, and/or 100 ng/L, plus a control. After exposure, Inland Silversides underwent a behavioral assay in which larval fish were subjected to a dark and light cycle stimuli to determine behavioral toxicity. Assessment of total distanced moved and thigmotaxis (wall hugging), used to measure hyper/hypoactivity and anxiety like behavior, respectively, demonstrate that even at the lowest concentration of 0.1 ng/L pyrethroids can induce behavioral changes at all salinities. We found that toxicity decreased as salinity increased for all pyrethroids except permethrin. Additionally, we found evidence to suggest that the relationship between log KOW and thigmotaxis is altered between the lower and highest salinities

    Studying interaction between the Pacific oyster, Crassostrea gigas, and Ostreid herpesvirus type 1

    No full text
    Ostreid herpesvirus type 1 (OsHV-1) can be considered one of the major infectious agents in Pacific oysters, Crassostrea gigas, in France and all around the world. Differences in terms of mortality among infected animals were reported suggesting a genetic basis of the susceptibility to the OsHV-1 infection. In this context, the main objective of this thesis was to understand the interactions between Pacific oysters and OsHV-1, in particular, the molecular basis of the viral cycle. Results showed that the virus is able to replicate in the host regardless of its stage of development or its susceptibility. However, multiplication kinetics is faster in the most susceptible individuals compared to less susceptible ones. After an active replication phase, it would appear that the virus is no detectable in survival individuals. This observation suggests (i) a remission with elimination of the virus or (ii) virus persistence without detectable symptoms. These results highlight the ability of the virus circulating in the host without causing mortality. These individuals can excrete viral particles and interfere with the infection process in the field. Genes that could be involved in antiviral defenses were also identified in Pacific oysters (IFI44, IAP, glypican, 
). All these results represent a first contribution to the understanding of OsHV-1 cycle in Pacific oysters, particularly at the molecular level.Le virus ostreid herpesvirus type 1 (OsHV-1), peut ĂȘtre considĂ©rĂ© comme un des agents infectieux majeurs affectant les Ă©levages d’huĂźtres creuses, Crassostrea gigas, en France et dans le monde. Des diffĂ©rences de mortalitĂ©s ont Ă©tĂ© observĂ©es au sein de cette espĂšce lors de l’infection virale laissant suspecter une base gĂ©nĂ©tique de la sensibilitĂ© Ă  la maladie. Dans ce contexte, l’objectif principal du travail de thĂšse Ă©tait de mieux comprendre les interactions entre l’huĂźtre creuse et OsHV-1, et plus particuliĂšrement, les bases molĂ©culaires du cycle viral. Les rĂ©sultats obtenus montrent que le virus est capable de se rĂ©pliquer chez l’hĂŽte quel que soit son stade de dĂ©veloppement et sa sensibilitĂ© Ă  l’infection. Cependant, la cinĂ©tique de multiplication est plus rapide chez des individus les plus sensibles comparĂ©s aux animaux moins sensibles. Il apparaĂźt Ă©galement que chez les individus survivants suite Ă  l’infection, le virus n’est plus dĂ©tectable aprĂšs une phase de rĂ©plication active. Cette observation laisse suspecter (i) une rĂ©mission avec une Ă©limination du virus ou (ii) une persistance du virus sans symptĂŽmes dĂ©tectables. Ces rĂ©sultats mettent en lumiĂšre la possibilitĂ© du virus de circuler au sein des individus ne prĂ©sentant pas de signes particuliers de maladie. Ces individus peuvent excrĂ©ter des particules virales et intervenir ainsi dans le processus d’infection en milieu naturel. Les travaux rĂ©alisĂ©s ont Ă©galement permis d’identifier des gĂšnes d’intĂ©rĂȘt chez l’huĂźtre creuse, pouvant intervenir dans les mĂ©canismes de dĂ©fense anti-viraux (IFI44, IAP, glypican, 
). L’ensemble de ces rĂ©sultats reprĂ©sente une contribution Ă  la comprĂ©hension du cycle d’OsHV-1 et des rĂ©ponses de l’hĂŽte, plus particuliĂšrement au niveau molĂ©culaire

    Quantification of genes expressed during an in vitro infection of haemocytes from Ostrea edulis with parasites Bonamia ostreae by Real times PCR

    No full text
    Oyster fanning represents a significant economic part of the French aquaculture production. This production is approximately about 150 000 tons of shells a year [Buestel, 2004]. However the development ofthis activity can be limited by infectious diseases (virus, protozoan or bacteria). Flat oysters suffered from two epizooties caused by two parasitic di seases: martieilliosis and the bonamiosis. These diseases appeared at the end of the Sixties and Seventies respectively. These diseases had a negative impact on the economy because they decrease the production of Flat oysters by 90% between 1979 and .1980. [Buestel 2004, Grizel 1985] The means of fights against bonamiosis are limited and mainly rely on a preventive approach. In fact, it is impossible to use the vaccination especially because they do not have abodes. But it is also impossible to use treatments for invertebrate because they are product in open systems on the wild. The bonamiosis is a notifiable disease listed by the The World Organisation for Animal Health (OIE) as weil as by European Union. That implies a surveillance of stocks and restrictions of transfer in order to avoid the contamination of healthy zones free. In addition another approach is based on the obtention of resistant animaIs through a genetic selection. Thanks to that it is possible to obtain a better rate of survival in the zones where the parasite is endemic [Naciri et Al.; 1998]. In this context, a better understanding of defence mechanisms developed by the flat oyster against parasite and interaction between oyster and parasite is needed. These data are necessary for the conservation of the flat oyster and to the restoring of flat oyster on our coasts. The objective of this work was to study in vitro the expression of genes of haemocytes of flat oyster in contact with some purified parasite Bonamia ostreae. In a first step, our study has consisted in standardizing the Real Time Quantitative PCR in order to obtain curves standards for quantity the expression of genes of Ostrea edulis. After a session dedicated to bibliographical researches, we will see material and methods presented in the second part. Lastly results will be exposed and discussed

    Transcriptomic study of 39 ostreid herpesvirus 1 genes during an experimental infection

    No full text
    Massive mortality outbreaks have been reported in France since 2008 among Pacific oysters, Crassostrea gigas, with the detection of a particular OsHV-1 variant called ÎŒVar. Virus infection can be induced in healthy spat in experimental conditions allowing to better understand the disease process, including viral gene expression. Although gene expression of other herpesviruses has been widely studied, we provide the first study following viral gene expression of OsHV-1 over time. In this context, an in vivo transcriptomic study targeting 39 OsHV-1 genes was carried out during an experimental infection of Pacific oyster spat. For the first time, several OsHV-1 mRNAs were detected by real-time PCR at 0 h, 2 h, 4 h, 18 h, 26 h and 42 h post injection. Several transcripts were detected at 2 h post infection and at 18 h post infection for all selected ORFs. Quantification of virus gene expression at different times of infection was also carried out using an oyster housekeeping gene, Elongation factor. Developing an OsHV-1-specific reverse transcriptase real time PCR targeting 39 viral gene appears a new tool in terms of diagnosis and can be used to complement viral DNA detection in order to monitor viral replication

    Detection and distribution of ostreid herpesvirus 1 in experimentally infected Pacific oyster spat

    No full text
    High mortality rates are reported in spat and larvae of Pacific oyster Crassostrea gigas and associated with ostreid herpesvirus 1 (OsHV-1) detection in France. Although the viral infection has been experimentally reproduced in oyster larvae and spat, little knowledge is currently available concerning the viral entry and its distribution in organs and tissues. This study compares OsHV-1 DNA and RNA detection and localization in experimentally infected oysters using two virus doses: a low dose that did not induce any mortality and a high dose inducing high mortality. Real time PCR demonstrated significant differences in terms of viral DNA amounts between the two virus doses. RNA transcripts were detected in oysters receiving the highest dose of viral suspension whereas no transcript was observed in oysters injected with the low dose. This study also allowed observing kinetics of viral DNA and RNA detection in different tissues of oyster spat. Finally, viral detection was significantly different in function of tissues (p < 0.005), time (p < 0.005) with an interaction between tissues and time (p < 0.005) for each probe

    In situ localization and tissue distribution of ostreid herpesvirus 1 proteins in infected Pacific oyster, Crassostrea gigas

    No full text
    Immunohistochemistry (IHC) assays were conducted on paraffin sections from experimentally infected spat and unchallenged spat produced in hatchery to determine the tissue distribution of three viral proteins within the Pacific oyster, Crassostrea gigas. Polyclonal antibodies were produced from recombinant proteins corresponding to two putative membrane proteins and one putative apoptosis inhibitor encoded by ORF 25, 72, and 87, respectively. Results were then compared to those obtained by in situ hybridization performed on the same individuals, and showed a substantial agreement according to Landis and Koch numeric scale. Positive signals were mainly observed in connective tissue of gills, mantle, adductor muscle, heart, digestive gland, labial palps, and gonads of infected spat. Positive signals were also reported in digestive epithelia. However, few positive signals were also observed in healthy appearing oysters (unchallenged spat) and could be due to virus persistence after a primary infection. Cellular localization of staining seemed to be linked to the function of the viral protein targeted. A nucleus staining was preferentially observed with antibodies targeting the putative apoptosis inhibitor protein whereas a cytoplasmic localization was obtained using antibodies recognizing putative membrane proteins. The detection of viral proteins was often associated with histopathological changes previously reported during OsHV-1 infection by histology and transmission electron microscopy. Within the 6h after viral suspension injection, positive signals were almost at the maximal level with the three antibodies and all studied organs appeared infected at 28h post viral injection. Connective tissue appeared to be a privileged site for OsHV-1 replication even if positive signals were observed in the epithelium cells of different organs which may be interpreted as a hypothetical portal of entry or release for the virus. IHC constitutes a suited method for analyzing the early infection stages of OsHV-1 infection and a useful tool to investigate interactions between OsHV-1 and its host at a protein leve

    Salinity Changes the Dynamics of Pyrethroid Toxicity in Terms of Behavioral Effects on Newly Hatched Delta Smelt Larvae

    No full text
    Salinity can interact with organic compounds and modulate their toxicity. Studies have shown that the fraction of pyrethroid insecticides in the aqueous phase increases with increasing salinity, potentially increasing the risk of exposure for aquatic organisms at higher salinities. In the San Francisco Bay Delta (SFBD) estuary, pyrethroid concentrations increase during the rainy season, coinciding with the spawning season of Delta Smelt (Hypomesus transpacificus), an endangered, endemic fish. Furthermore, salinity intrusion in the SFBD is exacerbated by global climate change, which may change the dynamics of pyrethroid toxicity on aquatic animals. Therefore, examining the effect of salinity on the sublethal toxicity of pyrethroids is essential for risk assessments, especially during the early life stages of estuarine fishes. To address this, we investigated behavioral effects of permethrin and bifenthrin at three environmentally relevant concentrations across a salinity gradient (0.5, 2 and 6 PSU) on Delta Smelt yolk-sac larvae. Our results suggest that environmentally relevant concentrations of pyrethroids can perturb Delta Smelt larvae behavior even at the lowest concentrations (&lt;1 ng/L) and that salinity can change the dynamic of pyrethroid toxicity in terms of behavioral effects, especially for bifenthrin, where salinity was positively correlated with anti-thigmotaxis at each concentration

    Expression de gÚnes viraux de l'herpÚs virus OsHV-1 sous sa forme ”Var chez l'hußtre creuse, Crassostrea gigas

    No full text
    Le premier cas d'infection Ă  virus de type herpĂšs a Ă©tĂ© rapportĂ© en 1972, aux Etats Unis, chez l'huĂźtre amĂ©ricaine, Crassostrea virginica (Farley et al, 1972). A partir de 1991, des mortalitĂ©s massives associĂ©es Ă  la dĂ©tection de virus de type herpes ont Ă©tĂ© observĂ©es chez plusieurs espĂšces de bivalves marins, Ă  diffĂ©rents stades de dĂ©veloppement (essentiellement chez les larves et le naissain) et dans diffĂ©rentes rĂ©gions du monde. Sur la base d’observation en microscopie Ă©lectronique Ă  transmission, ces virus prĂ©sentaient des caractĂ©ristiques morphologiques identiques Ă  celles des Herpesvirus (Roizman, 1982). Les connaissances acquises concernant la taille, la structure et le sĂ©quençage du gĂ©nome d’un virus infectant les larves d’huĂźtres creuses en France ont confirmĂ© l'hypothĂšse que ce virus, appelĂ© Ostreid herpesvirus 1 appartient Ă  l’ordre des Herpesviales et Ă  la famille des Malacoherpesviridae (Le Deuff & Renault, 1999 ; Davison et al., en 2005 ; Davison et al., 2009). Le sĂ©quençage complet a montrĂ© que la structure de l'ADN viral est comparable Ă  l'herpĂšs simplex virus de type 1, HSV-1. La taille du gĂ©nome d'OsHV-1 est estimĂ©e Ă  207 kpb et comprend de 124 cadres de lecture (ORFs). Depuis 2008, des Ă©pisodes de surmortalitĂ©s ont Ă©tĂ© rapportĂ©s dans diffĂ©rentes rĂ©gions de production d’huĂźtres creuses, C. gigas, en France, en Irlande et au Royaume Uni. Les donnĂ©es disponibles suggĂšrent que le virus est une cause prĂ©pondĂ©rante avec la dĂ©tection un gĂ©notype viral particulier, appelĂ© OsHV-1 ”Var Ă  partir de 2008 (Segarra et al. 2010). Bien que les facteurs climatiques seuls n’apparaissent pas comme une cause suffisante pour expliquer le phĂ©nomĂšne, les surmortalitĂ©s sont bien saisonniĂšres en termes d’apparition. Une augmentation rapide de la tempĂ©rature de l’eau au printemps a Ă©tĂ© clairement identifiĂ©e comme un facteur de risque majeur. Pour diminuer les effets de ce virus, les moyens de lutte sont relativement restreints. Au vue des conditions d'Ă©levage des huĂźtres en milieu ouvert, l'utilisation de traitements mĂ©dicamenteux reste inadaptĂ©e. De plus, l'absence de mĂ©moire immunitaire chez les invertĂ©brĂ©s ne permet pas d'utiliser la vaccination pour combattre l’infection virale. Ainsi, les moyens de lutte reposent essentiellement sur (1) la surveillance des stocks et des transferts afin de limiter la propagation de la maladie et (2) sur le dĂ©veloppement d'animaux rĂ©sistants Ă  l'infection se traduisant par une meilleure survie. Ces diffĂ©rentes approches nĂ©cessitent des outils de diagnostic adaptĂ©s, une bonne connaissance du cycle viral, et plus particuliĂšrement des interactions entre l’hĂŽte, le virus et l’environnement. Dans ce contexte, il apparaĂźt indispensable de mieux connaĂźtre l'expression des gĂšnes viraux au cours de l'infection chez l'huĂźtre creuse, Crassostrea gigas. Il a Ă©tĂ© choisi de suivre l’expression de gĂšnes viraux lors d’une infection expĂ©rimentale. En effet, trĂšs rĂ©cemment, Schikorski et al. (2011) ont dĂ©veloppĂ© un protocole d’infection expĂ©rimentale rendant possible la reproduction de l'infection virale en laboratoire chez le naissain d'huĂźtres creuses. D'autre part, le sĂ©quençage complet d'OsHV-1 (Davison et al., 2005) permettait de sĂ©lectionner des gĂšnes d’intĂ©rĂȘt ( 41 gĂšnes candidats). Afin d'Ă©tudier la cinĂ©tique d'expression des gĂšnes sĂ©lectionnĂ©s, la PCR en temps rĂ©el Ă  Ă©tĂ© optimisĂ© pour chacun couple d'amorces. La prĂ©sente Ă©tude a Ă©tĂ© rĂ©alisĂ©e chez des huĂźtres de moins d’un an appartenant de 2 familles prĂ©sentant un comportement contrastĂ©es en terme de rĂ©sistance Ă  l’infection en condition expĂ©rimentale : une famille rĂ©sistante (10% de mortalitĂ© 6 jours post infection) et une famille sensible (100% de mortalitĂ© 3 jours post infection). Suite Ă  l'infection, un fragment de manteau a Ă©tĂ© prĂ©levĂ© sur 12 individus pour chaque condition et chaque temps de prĂ©lĂšvement. Les temps de prĂ©lĂšvements post injection sĂ©lectionnĂ©s Ă©taient : 0h, 4h, 8h, 12h et 26h. Les premiers rĂ©sultats obtenus en PCR en temps rĂ©el mettent en Ă©vidence la dĂ©tection de gĂšnes trĂšs prĂ©coces mais Ă©galement plus tardifs. Dans cette Ă©tude, aprĂšs 26h d'infection, les 41 gĂšnes viraux semblent tous ĂȘtre exprimĂ©s chez la famille sensible. Ainsi, l'expression des gĂšnes d'OsHV-1 semble avoir une cinĂ©tique similaire Ă  ceux des herpesvirus de vertĂ©brĂ©s. En effet, l’expression des gĂšnes viraux chez les herpersvirus comporte trois phases au cours de l’infection : (1) des gĂšnes sont exprimĂ©s trĂšs prĂ©cocement avec synthĂšse de protĂ©ines activatrices, (2) d’autres gĂšnes prĂ©cocement avec la synthĂšse d’enzymatiques impliquĂ©es dans la rĂ©plication dont l'ADN polymĂ©rase et (3) et enfin un troisiĂšme groupe de gĂšnes tardivement avec la synthĂšse des composants protĂ©iques de la capside et des glycoprotĂ©ines d'enveloppe. Ainsi, cette Ă©tude a permis de dĂ©tecter la prĂ©sence d'ARN transcrits durant une infection expĂ©rimentale Ă  OsHV-1 chez le naissain d'huĂźtre creuse Crassostrea gigas. Enfin, ceci confirme la rĂ©plication du virus au sein mĂȘme de son hĂŽte et par consĂ©quent renseigne sur le cycle de vie viral d'OsHV-1
    corecore