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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Behavior is altered following exposure to
pyrethroids at concentrations as low as
0.1 ng/L.

• At the lowest salinity, inland silversides
exposed to cypermethrin had increased
anxiety like behavior.

• Larvae exposed to permethrin were
hypoactive and displayed decreased thig-
motaxis.

• Bifenthrin caused the fewest behavioral
changes.

• This is the largest comparison of pyre-
throid toxicity across altered abiotic con-
ditions.

A B S T R A C TA R T I C L E I N F O

Editor: Jay Gan

Keywords:
Marine
Drought
Insecticide
Ecotoxicology
Climate change
Menidia beryllina

Pyrethroids, a class of commonly used insecticides, are frequently detected in aquatic environments, including estuar-
ies. The influence that salinity has on organism physiology and the partitioning of hydrophobic chemicals, such as py-
rethroids, has driven interest in how toxicity changes in saltwater compared to freshwater. Early life exposures in fish
to pyrethroids cause toxicity at environmentally relevant concentrations, which can alter behavior. Behavior is a
highly sensitive endpoint that influences overall organism fitness and can be used to detect toxicity of environmentally
relevant concentrations of aquatic pollutants. Inland Silversides (Menidia beryllina), a commonly used euryhaline
model fish species, were exposed from 5 days post fertilization (~1-day pre-hatch) for 96 h to six pyrethroids:
bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, esfenvalerate and permethrin. Exposureswere conducted at three sa-
linities relevant to brackish, estuarine habitat (0.5, 2, and 6 PSU) and across 3 concentrations, either 0.1, 1, 10, and/or
100 ng/L, plus a control. After exposure, Inland Silversides underwent a behavioral assay inwhich larvalfishwere sub-
jected to a dark and light cycle stimuli to determine behavioral toxicity. Assessment of total distancedmoved and thig-
motaxis (wall hugging), used to measure hyper/hypoactivity and anxiety like behavior, respectively, demonstrate that
even at the lowest concentration of 0.1 ng/L pyrethroids can induce behavioral changes at all salinities. We found that
toxicity decreased as salinity increased for all pyrethroids except permethrin. Additionally, we found evidence to sug-
gest that the relationship between log KOW and thigmotaxis is altered between the lower and highest salinities.
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1. Introduction

Pyrethroids are a class of synthetic insecticides, developed from the nat-
ural, less toxic pyrethrin that is derived from the flower Chrysanthemum
cinerariifolium (Hitmi et al., 2000). Pyrethroid insecticides are estimated
to make up 25 % of all insecticide applications globally (Aznar-Alemany
and Eljarrat, 2020). Pyrethroids have replaced organophosphates in many
instances, as they are often touted as less persistent and safer for application
due to having low mammalian toxicity (Brander et al., 2016a). However
pyrethroids have been shown to exhibit lethal and sublethal toxicity in
non-target organisms at concentrations as low as the ng/L range (Hladik
and Kuivila, 2009; Weston et al., 2019). Although pyrethroids have low
water solubility and high octanol-water partition coefficient (log KOW),
which may make them more likely to sorb to soil or lipids in aquatic
biota, they are frequently detected in surface waters, including in estuaries.

Global climate change is expected to cause changes in precipitation pat-
terns that will lead to altered freshwater inputs into estuarine ecosystems,
causing salinity intrusion (Herbold et al., 2022). These shifts will have a
substantial effect on estuarine salinity gradients. For example, the
Sacramento-San Joaquin Delta/San Francisco Bay (SFBD), California, USA
is predicted to see an increase of up to 9 practical salinity units (PSU) during
the spring and summer seasons by 2090 due to sea level rise and altered
precipitation patterns (Knowles and Cayan, 2002). Drought is already
suspected to be contributing to declining fish populations in the SFBD.
The combined effects of drought and sea level rise are likely to complicate
management and conservation efforts of native fishes to the SFBD (Cloern
et al., 2011; Mahardja et al., 2021). Many estuarine species, including
fishes, are dependent upon healthy estuaries for critical habitat, such as
nurseries and breeding grounds (Méjanelle et al., 2020). Pyrethroid appli-
cations often occur in the spring and can overlapwith the spawning seasons
of some fishes as well as the beginning of the dry season in many regions.
An additional consequence of climate change is a predicted increase in
insecticide application (Taylor et al., 2018; Hasenbein et al., 2019). The
Central Valley in California is a large agricultural region that relies heavily
on pyrethroids; the region drains into the SFBD, and increased insecticide
usemay have direct implications on pyrethroid load in the SFBD. As species
habitat ranges change and regions become warmer, some pest species will
hatch sooner and/or expand to new regions causing earlier and more
frequent insecticide applications (Delcour et al., 2015). The potential for
increased salinity and insecticide use emphasizes the need to understand
toxicity in a range of concentrations across a salinity gradient.

Salinity can cause differential toxicity with hydrophobic chemicals,
including pesticides like pyrethroids, which may be due in part to the
changes in their partitioning behavior and the physiology of the organism.
The partitioning of pyrethroids in the water column are altered with
changes in salinity. Both bifenthrin and cypermethrin, two commonly
used pyrethroids, were evaluated under freshwater and saltwater condi-
tions where it was found that the log KOW increased and water solubility
decreased in the saltwater treatments (Saranjampour et al., 2017). Salinity
alters osmoregulation of euryhalinefishes, wherein they absorbmorewater
as salinity increases to maintain osmotic balance potentially increasing
ingestion and absorption of toxicants (Kültz, 2015). This is in comparison
to freshwater fish that absorb little water, which could limit ingestion of
toxins. Differences in physiology and chemical partitioning likely work
together to cause differential toxicity across a salinity gradient.

Since pyrethroids are neurotoxicants, behavior is an informative suble-
thal endpoint to use in the study of their effects (Farag et al., 2021). Pyre-
throids are typically classified into two types: type I pyrethroids contain a
carboxylic ester of cyclopropane and have two chirality centers while
type II pyrethroids have a cyano-group in the α position and three chirality
centers (Lawrence and Casida, 1982; Soderlund et al., 2002). The different
pyrethroid types have been found to induce differential toxicity, for exam-
ple Zebra Danio (Danio rerio), commonly referred to as Zebrafish, had
altered gene expression and varying dose response relationships dependent
upon pyrethroid type (Soderlund et al., 2002; Awoyemi et al., 2019). Pyre-
throids induce toxicity primarily by altering the firing of voltage-gated

sodium ion channels. As pyrethroids bind to sodium gates and prevent
their closure, the ions fire continually causing neuron excitability which
can lead to seizers, paralysis, and mortality. Due to the high sensitivity of
behavioral endpoints, studies can identify ecologically relevant, sublethal
effects of contaminants at environmentally relevant concentrations (Segarra
et al., 2021). For example, exposure to bifenthrin toxicity can alter predator
avoidance behavior in Inland Silversides (Menidia beryllina) at concentrations
as low as 3 ng/L (Frank et al., 2019). Sublethal effects are important for stud-
ies on non-target organisms because concentrations in the aquatic environ-
ment rarely reach concentrations high enough to elicited acute lethality.

Given the high usage of pyrethroids and their potential risk to estuarine
organisms, we have studied six pyrethroids at three salinities relevant to
brackish waters to determine their relative toxicity in early life stage Inland
Silversides. Inland Silversides are an euryhaline, model fish species com-
monly used in research and approved for regulatory work. The species is
native to the eastern and southern coasts of the United States and were
introduced to the SFBD (Middaugh and Hemmer, 1992). Adverse effects
have been noted in Inland Silversides following exposure to pyrethroids
at environmentally relevant concentrations (Brander et al., 2012; Brander
et al., 2016b; DeCourten and Brander, 2017; DeCourten et al., 2020). Find-
ings from studies with Inland Silversides can provide information on the
toxicity of compounds to at-risk species, such as the Delta Smelt
(Hypomesus transpacificus) (Lawrence et al., 2021), an endangered osmerid
species endemic to the SFBD (Hobbs et al., 2019). Inland Silversides are
found at salinities ranging from 0 to 35 PSU, making them an ideal euryha-
line species to use for testing across salinity gradients. In a sister study to the
one presented here, the behavior of Delta Smelt larvae was altered when
exposed to bifenthrin and permethrin at the same concentrations and salin-
ities used in the current study (Segarra et al., 2021). An assessment of these
pyrethroids between two species, one endangered while the other a non-
native, model organism, allows for better informed risk assessment of the
Delta Smelt because Inland Silversides are frequently used as a surrogate
for the more sensitive species found in the SFBD (Lawrence et al., 2021).

Here, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, esfenvalerate, and
permethrin were investigated for behavioral toxicity at 0.5, 2, and 6 PSU.
These compounds were chosen due to recent regulatory standards in the
SFBD inwhich a Total MaximumDaily Load (TMDL) is set to be implemented
for these six pyrethroids (California Regional Water Quality Control Board
Central Valley Region, 2017). The goal of this study was to assess the relative
toxicity of the six pyrethroids on larval behavior, across the salinities of inter-
est. One of the goals of the larger project that includes this study was to assess
the comparative toxicity between Inland Silverside and Delta Smelt. By curat-
ing this large toxicity dataset, comparisons can be made between the relative
toxicity of these pyrethroids in the Inland Silverside and in the Delta Smelt
from our sister study (Segarra et al., 2021). This study expands the estuarine
and marine ecotoxicology dataset for pyrethroids and provides further infor-
mation on how salinity can alter toxicity at ecologically relevant endpoints.
This assessment of the six pyrethroids at three salinities demonstrates the larg-
est assessment of pyrethroid toxicity under different abiotic conditions to date.

2. Methods

2.1. Chemicals

Bifenthrin (part #: N-11203; CAS: 82657-04-3), cyfluthrin (part #: N-
11130; CAS: 68359-37-5), cyhalothrin (part #: N-12307; CAS: 91465-08-
6), cypermethrin (part #: N-11545; CAS: 52315-07-8), esfenvalerate (part
#: N-11102; CAS: 66230-04-4), and permethrin (part #: N-12848; CAS:
52645-53-1) were purchased from Chem Service (West Chester, PA,
USA). HPLC-grade methanol used to make stock solutions was purchased
from Fisher Scientific (Waltham, MA, USA).

2.2. Organisms and husbandry

Adult Inland Silverside broodstock were housed at the Oregon State
University (OSU), Hatfield Marine Science Center under Animal Care and
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Use Program (ACUP) protocol #4999 and maintained at 10–20 PSU and
23 °C on a 14:10 light cycle. Adult fish were fed a combination of Hikari
tropical micro pellets (Kyorin Food Industries Ltd., Kasai City, Japan),
Hikari freeze-dried tubifex worms (Kyorin Food Industries Ltd.), Hikari
frozen mysid shrimp (Kyorin Food Industries Ltd., Kasai City, Japan), and
live Artemia nauplii hatched from Brine Shrimp Eggs (Brine Shrimp Direct,
Ogden, UT, USA) supplemented with Selcon™ (American Marine Inc.,
Ridgefield, CT, USA). Brood fish were approximately 1.5–2 years old at
the time of spawning. The spawning protocol was adapted from
Middaugh et al. (1986) and occurred as described in Hutton et al. (2021)
(Middaugh et al., 1986; Hutton et al., 2021). Briefly, substrate was added
to adult broodstock tanks for 16–20 h. Spawning substrate and embryos
were subsequently transported to OSU main campus, placed in 2 PSU arti-
ficial seawater (ASW) created with Instant Ocean and reverse osmosis
water, and allowed to develop on the substrate until 4 days post fertilization
(dpf). At 4 dpf, embryos were gently removed from the spawning substrate
using forceps, placed into ASWmade to their respective exposure salinities,
rinsed, and assessed for development using a VWR VistaVision Dissecting
Scope (VWR International, Radnor, PA, USA). Next, 16–20 embryos were
then placed into 250 mL beakers with 50 mL of either 0.5, 2.0, or 6.0
PSU ASW for a 24-hour acclimation period. All experiments were con-
ducted under OSU Institutional Animal Care and Use Committee (IACUC)
protocol #0035.

2.3. Experimental design

Following the acclimation period, 50 mL of concentrated exposure
solution was poured into beakers to achieve nominal concentrations and
a final volume of 100 mL/beaker. All exposures replicates (including
controls) contained 0.01 % methanol. Organisms were exposed to three
salinities, 0.5, 2.0, and 6.0 PSU and four concentrations including the
control. Bifenthrin, cyfluthrin and cyhalothrin exposures were conducted
at concentrations of 0.0, 0.1, 1.0, and 10.0 ng/L, and cypermethrin,
esfenvalerate and permethrin exposures were conducted at concentrations
of 0.0, 1.0, 10.0, and 100.0 ng/L. These concentrations are environmentally
relevant and were chosen based on their known occurrences in the SFBD
(Oros and Werner, 2005; Woudneh and Oros, 2006; Weston et al., 2015).
Therewere four replicates per treatment combination and 16–20 organisms
per replicate. Exposures were conducted for 96 h using semi-static condi-
tions. New exposure solutions were made daily followed by a 50 % water
change. At this time survival was assessed and debris were removed.
Following experiment maintenance organisms were fed Gemma Microdiet
ad libitum (Skretting, Westbrook, Maine). Organisms hatched into expo-
sure solutions between days 1 and 2 of exposure. There were no hatching
differences between controls and pyrethroid exposed embryo's hatching
rates (p > 0.05, ANOVA, Dunnett's post hoc test). pH, dissolved oxygen,
salinity, temperature, and ammonia were recorded daily (Table S1).
Organisms were maintained on a 14:10 light cycle.

2.4. Behavioral assay

At the end of the 96-hour exposure period, a behavioral assay modified
from Segarra et al. (2021), was performed. Twenty-four well, polystyrene
plates were loaded randomly with one fish and 1 mL of solution per
well. Fish were acclimated to the plate for at least 45 min and then placed
into a DanioVision Observation Chamber (Noldus, Wageningen, the
Netherlands) maintained at 23 °C using a PULACO Mini Submersible
Water Pump (Amazon, Inc.) and JEBO Stainless Steel Aquarium Tank
Heating Rod (Walmart, Inc.). An additional 15 min of acclimation occurred
inside the observation chamber in the dark followed by an alternating dark:
light cycle with three 10-minute periods of dark interspersed with two 5-
minute periods of light (Segarra et al., 2021). The dark and light cycles
are referred to as dark1, Dark2, and Dark3, and the light cycles are referred
to as Light1 and Light2 respectively. A total of 3–5 pseudo replicates
(individual fish) from each replicate were analyzed. Behavioral tracking
was conducted between 07:00 and 19:00 h, which encompassed the

standard light period of the exposures. Behavior was recorded and tracked
using a Basler Gen 1 Camera using Ethovision® XT15 software, 1280 ×
960 resolution, 10,000 lx of light, and a 25/s frame rate.

The endpoints analyzed in this study were selected due to their use in
other behavioral studies and ecological relevance. We assessed total
distance moved (TDM) and thigmotaxis (wall hugging) of Inland Silver-
sides. TDM is a well-established behavioral endpoint that informs on both
hypo- and hyperactivity (Steenbergen et al., 2011; Steele et al., 2018).
Thigmotaxis is often used as a measure of anxiety and fear in fish following
exposure to toxicants (Hamilton et al., 2021). Increasedmovement towards
the edge of thewell and a tendency to stay close to thewall demonstrates an
increase in thigmotaxis and indicates anxiety like behavior. A decrease in
thigmotaxis corresponds to a decrease in anxiety like behavior which may
increase an organism's risk of predation as they spend less time hiding.
Time spent bursting (speed > 20 mm/s), cruising (speed > 0.5 mm/s and
<20 mm/s) or freezing (speed < 0.5 mm/s), meander °/s, and velocity
(mm/s) were also measured (see supplemental for further information).

2.5. Growth index

Following behavioral assessment, organismswere collected, euthanized
with an overdose of buffered MS222 at 200 mg/L, placed in 3 % parafor-
maldehyde, and stored at 4 °C until analysis. For growth index, 2–3 individ-
uals from each replicate and treatment were imaged using an Olympus
SZ61 Stereo Microscope and Olympus DP23 Microscope Digital Camera
(Olympys Corporation, Tokyo, Japan), and length and width were mea-
sured using cellSens Imaging Software (Olympys Corporation, Tokyo,
Japan). Growth index was calculated as described in Siddiqui et al. with
the following equation:

W
L
� d

where W is width, L is length, and d is the number of exposure days
(Siddiqui et al., 2022).

2.6. Analytical chemistry

To confirm that pyrethroid stock solutions were made correctly, the
highest concentration from each salinity and pyrethroidwere collected dur-
ing experimental maintenance on day three and stored at−20 °C until they
were shipped to the USGS Organic Chemistry Research Laboratory (Sacra-
mento, CA). Due to analytical limitations, only the highest concentrations
were assessed; however, verification of this concentration provides confi-
dence that the other concentrations were also nominal. Pyrethroid concen-
trations were confirmed as described in Segarra et al. (2021). Briefly, one-
liter water samples were collected in amber glass bottles; pyrethroids
concentrations were measured using solid-phase extraction followed by
gas chromatography–mass spectrometry (Hladik and Kuivila, 2009;
Hladik and McWayne, 2012).

2.7. Statistical analysis

Statistical analysis was performed in R software version 4.0.3 (Vienna,
Austria) and R Studio version 1.3.1093 (Boston, MA, USA). Dark and
light cycles were compared within stimuli. Different behavioral responses
due to stimuli change were assessed by calculating the difference between
the response value after the stimuli change compared to the value before
the change. For statistical analysis the behavioral data were normalized
between 0 and 1 using the following equation:

x− min xð Þ
max xð Þ− min xð Þ

where x is the value.
Behavioral data were not normally distributed (confirmed by Q-Q plot)

and were therefore analyzed using a Kruskal-Wallis non-parametric test
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followed by a Dunn's test with a Bonferonni correction for multiple compar-
ison. For heatmap visualization of behavioral results, the z-score was calcu-
lated from the normalized behavioral data which distributes the results
above and below zero. Growth and survival data were normally distributed
and were analyzed by one-way ANOVA followed by Dunnett's test to com-
pare treatment vs. control. Dose response analysis was performed on TDM
using the drc package where 4 parameter log-logistic dose response models
were fit to each pyrethroid, salinity, and stimuli combination (Ritz et al.,
2015). To determine the effect of salinity, physicochemical properties of
each pyrethroid (type and log KOW), and concentration on behavioral, the
thigmotaxis data were analyzed using a generalized linear model (GLM)
with a quasibinomial distribution. Log KOW values used in analysis were
from (Laskowski, 2002). Results were considered statistically significant
at an alpha < 0.05.

3. Results

3.1. Analytical chemistry

Analytical results are summarized in Table S2; as the nominal and mea-
sured concentrations are consistent, all concentrations are referred to as
nominal throughout.

3.2. Survival and growth

There were no significant differences in survival across all compounds,
concentrations, and salinity combinations except for cypermethrin
100 ng/L at 2 PSU exposures which had significantly lower survival
(89.4%) relative to the control (97.5%) (p< 0.05, Dunnett's Test) (Fig. S1).

Growth was significantly decreased relative to the control in the 1 and
100 ng/L concentrations of cypermethrin at 0.5 PSU, and the 100 ng/L of
esfenvalerate at 2 PSU was significantly increased relative to the control
(p < 0.05; Dunnett's Test). All other compounds, concentrations, and salin-
ity combinations did not exhibit significant differences in growth in any
treatments relative to the control (Fig. S2).

3.3. Behavioral changes during dark: light cycle

Overall, Inland Silversides showed behavioral changes following expo-
sure to all six pyrethroids in all three salinities and concentrations. Inland
Silversides experience hyperactivity in the light compared to the dark
(Fig. S4). However, there were no differences in the exposed fish's response
to the initial light stimuli change relative to the controls (p > 0.05; Dunn's
Test). For brevity and due to the high correlation of velocity, meander,
and time spent bursting, cruising, and freezing to TDM (>0.6, Spearman's
Correlation) they are not discussed further, however results can be found
in Figs. S5–S9.

3.3.1. Hyper- and hypoactivity
An increase in TDM relative to the control corresponds to hyperactivity

and a decrease in TDM relative to the control corresponds to hypoactivity.
Overall, we found that in the highest salinity exposure there were fewer
effects on TDM relative to the lower salinity exposures. There were 32,
33, and 19 significant differences across all treatments in the 0.5, 2, and 6
PSU exposures respectively. In order of least to most significant differences
in TDM the pyrethroids at the studied concentrations are ranked
as bifenthrin < cyhalothrin < cyfluthrin and cypermethrin < permethrin
< esfenvalerate. More significant differences occurred during the dark
than the light cycles (Fig. 1).

3.3.1.1. Bifenthrin. Bifenthrin exposure caused the fewest changes in TDM
relative to the other pyrethroids regardless of salinity, followed by
cypermethrin (Fig. 2). Here, Inland Silversides exposed to bifenthrin only
demonstrated effects on TDM in the dark (Figs. 1 and 2) (p < 0.05, Dunn's
test). Hypoactivity was found in both the 0.5 and 2 PSU bifenthrin
exposures, however, we found that at 6 PSU TDM was increased in the

10 ng/L concentration (Fig. 2) (p < 0.05, Dunn's test), which indicates
there may have been a decrease in hypoactivity as salinity increased. Addi-
tionally, in the lower two salinities bifenthrin demonstrates evidence of
non-monotonic responses as the highest concentration had no significant
effect on TDM.

3.3.1.2. Cyfluthrin. Cyfluthrin had similar effects on TDM at both 0.5 and 2
PSU wherein it induced significant hypoactivity in the dark at 0.1 and
10 ng/L and hyperactivity in the light in the 1 ng/L exposure (Fig. 2)
(p < 0.05, Dunn's test). At 0.5 PSU there was also one instance of increased
TDM following exposure at 1 ng/L during the first dark cycle. At 6 PSU,
TDM was decreased in the 1 ng/L but increased in the 10 ng/L exposures
at 6 PSU during the dark cycles (Fig. 2) (p < 0.05, Dunn's test).

3.3.1.3. Cyhalothrin. Cyhalothrin induced more significant hypoactivity in
the 0.5 PSU exposure compared to the 2 and 6 PSU exposures. At 0.5 PSU
hyperactivity only occurred in the 1 ng/L exposure during the first dark
cycle. In the other two salinities, the most significant differences found
were hyperactive effects; there was one instance of significant hypoactivity
in the 6 PSU 0.1 ng/L first dark cycle (Fig. 2) (p < 0.05, Dunn's test).

3.3.1.4. Cypermethrin. Cypermethrin induced hyperactivity in all three
salinities; however, as salinity increased, the number of significant, hyper-
active changes decreased (Fig. 1) (p < 0.05, Dunn's test). In the 2 PSU expo-
sures cypermethrin appears to induce a non-monotonic response on
hyperactivity, wherein the responses are only in the lower two concentra-
tions and not the highest. Significant hypoactivity was only found in the
0.5 PSU exposure at 1 ng/L during the first light cycle (Fig. 2) (p < 0.05,
Dunn's test).

3.3.1.5. Esfenvalerate. Esfenvalerate exposure induced significant hyperac-
tivity at all salinities (Fig. 2) (p < 0.05, Dunn's test). Inland Silversides
displayed only one instance of hypoactivity in the 0.5 PSU 1 ng/L exposure
during the second dark cycle (Fig. 2) (p < 0.05, Dunn's test). Almost all the
effects from esfenvalerate occurred during dark cycles. The only significant
difference in TDM during a light cycle occurred in the 2 PSU 10 ng/L expo-
sure (Fig. 2) (p < 0.05, Dunn's test).

3.3.1.6. Permethrin. Permethrin was the only pyrethroid studied here to
have more significant differences in TDM as salinity increased (Figs. 1
and 2) (p < 0.05, Dunn's test). Permethrin induced hypoactivity primarily
during the dark periods (Figs. 1 and 2) (p < 0.05, Dunn's test). In the 0.5
PSU exposure, only hypoactivity was found. At 2 PSU, there was both
hyper and hypoactive effects. At 6 PSU, there was a clear non-monotonic
response in which the 1 ng/L exposure induced significant hyperactivity
in the light, the 10 ng/L exposure induced strong hypoactive effects in all
dark and light cycles, and the 100 ng/L exposure had no significant effects.
(p < 0.05, Dunn's test).

3.3.2. Thigmotaxis and anti-thigmotaxis behavior
A positive value indicates thigmotaxis behavior (wall-hugging),

whereas a negative value indicates decreased thigmotaxis, referred to as
anti-thigmotaxis behavior (more time spent in the center of the well,
away from the wall). As with TDM, significant effects on thigmotaxis across
all pyrethroids, overall, decreased as salinity increased from 33, 27, to
25 significant differences at 0.5, 2.0 and 6.0 PSU, respectively (Fig. 3)
(p < 0.05, Dunn's test). In order of least to most significant differences in
thigmotaxis and anti-thigmotaxis behavior the pyrethroids at the studied
concentrations are ranked as bifenthrin < cyfluthrin < cyhalothrin and
esfenvalerate < permethrin < cypermethrin.

3.3.2.1. Bifenthrin. Following exposure to bifenthrin anti-thigmotaxis
behavior was primarily seen in the 0.5 and 2 PSU exposures (p < 0.05,
Dunn's test). There was one instance of thigmotaxis at 0.5 PSU in the
10 ng/L second light cycle (p < 0.05, Dunn's test). In the 2 PSU exposure,
anti-thigmotaxis behavior was detected at 1 ng/L during both light cycles
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(Fig. 4). In the 6 PSU exposure, thigmotaxis was found during the dark
cycles at 10 ng/L (p < 0.05, Dunn's test) but no anti-thigmotaxis behavior
was detected at this salinity (Fig. 4).

3.3.2.2. Cyfluthrin. In the cyfluthrin exposures anti-thigmotaxis behavior
was found in both the 0.5 and 2 PSU during the dark cycles at 10 ng/L
and 0.1 and 1 ng/L respectively (Fig. 4) (p < 0.05, Dunn's test). The 6
PSU exposure resulted in one instance of anti-thigmotaxis in the second
light cycle in the 0.1 ng/L exposure. A significant increase in thigmotaxis
behavior was found in the first dark cycle at 0.1 ng/L and the light and
dark cycles at 10 ng/L (Fig. 4) (p < 0.05, Dunn's test).

3.3.2.3. Cyhalothrin. All three salinity exposures had instances of both
thigmotaxis and anti-thigmotaxis behavior. Anti-thigmotaxis behavior
was observed during dark cycles in the 0.5 PSU 10 ng/L exposure
and dark cycles in the 0.1 ng/L exposures at 2 and 6 PSU (Fig. 4).
Thigmotaxis behavior was observed in all three salinities at various
concentrations (Fig. 4). Overall, there was a slight increase in thigmo-
taxis and decrease in anti-thigmotaxis behavior as salinity increased
(Fig. 4).

3.3.2.4. Cypermethrin. Cypermethrin had a significant effect on increased
thigmotaxis behavior in almost all dark and light cycles and concentrations

at 0.5 PSU. At 2 PSU, a strong thigmotaxis response was also observed
in dark cycles, but only the 1 ng/L exposure had an effect during the
light cycles. The 6 PSU exposure exhibited two instances of anti-
thigmotaxis in the 1 and 10 ng/L exposure and one instance of increased
thigmotaxis in the 10 ng/L exposure, all during dark cycles (p < 0.05,
Dunn's test).

3.3.2.5. Esfenvalerate. Esfenvalerate resulted in significant anti-thigmotaxis
behavior in the 1 and 10 ng/L 0.5 PSU exposure during dark cycles and
significant increased thigmotaxis behavior at 100 ng/L 0.5 PSU exposure
also during dark1. At 2 PSU, significant anti-thigmotaxis was observed in
the 1 ng/L exposure in dark cycles and thigmotaxis behavior was observed
in the 10 ng/L exposure during light cycles. Only thigmotaxis behavior was
observed at 6 PSU in the high concentration during the first dark cycle and
both light cycles (Fig. 4) (p < 0.05, Dunn's test).

3.3.2.6. Permethrin. Permethrin caused significant anti-thigmotaxis behav-
ior in all salinities. Thigmotaxis was decreased in dark and light cycles in
the 0.5 and 6 PSU exposure and in dark cycles at 2 PSU (p < 0.05, Dunn's
test). Similar to the TDM results, permethrin demonstrates a non-
monotonic response in the 6 PSU, where the most significant decreases in
thigmotaxis are found at 10 ng/L and no effects are found at 100 ng/L in
any salinity (p < 0.05, Dunn's test) (Fig. 4).

Fig. 1. Number of significant differences found for each pyrethroid, salinity, and concentration (0.1, 1, 10, and/or 100 ng/L, right vertical labels) for total distance moved
(TDM) relative to the respective control (p < 0.05; Dunn's test). Effects within each dark and light cycle were summarized together. A number below zero signifies
significance found corresponding to decreased TDM (hypoactivity), a number above zero signifies the significance found corresponding to increased TDM (hyperactivity).
A) Dark cycle for bifenthrin, cyfluthrin, and cyhalothrin. B) Dark cycle for cypermethrin, esfenvalerate, and permethrin. C) Light cycle for bifenthrin, cyfluthrin, and
cyhalothrin. D) Light cycle for cypermethrin, esfenvalerate, and permethrin. The dark boarders represent data from the dark cycles and the light boarders represent data
from the light cycles. Concentrations (ng/L) are listed on the right of each plot. Bif = bifenthrin, Cyf = cyfluthrin, Cyh = cyhalothrin, Cyp = cypermethrin, Esf =
esfenvalerate, and Per = permethrin.
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3.4. Relationship between log KOW and behavior

To determine whether the pyrethroid properties (log KOW and pyre-
throid type) influenced toxicity we ran quasibinomial GLMs for all salinity
and concentration combinations compared to thigmotaxis behavior for
each individual pyrethroid. We found a significant positive relation
between log KOW and pyrethroid type for all concentrations in the 0.5
PSU exposures (Fig. 5, Table S2). In the 2 PSU exposure, thigmotaxis and
log KOW had a positive correlation in the 1 and 100 ng/L concentrations.
Type had a significant negative relationship with thigmotaxis for the
0.1 ng/L exposures and a positive relationship for the 1 and 100 ng/L expo-
sures (Fig. 5, Table S3). In the 6 PSU exposures, there was a negative corre-
lation between thigmotaxis and log KOW at 10 ng/L and 100 ng/L, and
pyrethroid type had a positive relationship with thigmotaxis at 10 ng/L
(Fig. 5, Table S3).

4. Discussion

Behavior has been used extensively as an endpoint to determine neuro-
logical and developmental effects of environmental contaminants in fish
species, including pyrethroids (Heintz et al., 2015; Frank et al., 2019;
Mundy et al., 2021; Segarra et al., 2021; Siddiqui et al., 2022). Behavior
is a high level, sensitive measurement that can indicate the relative toxicity
of contaminants (Bownik andWlodkowic, 2021). Because behavior is a rel-
atively high throughput sub-lethal endpoint, behavioral assays can be used
to determine the effects of several pyrethroids across multiple variables.

4.1. Pyrethroids induce neurotoxicity

Behavior is one of the highest-level endpoint to be affected by neurotox-
icity. While the main mechanism of pyrethroids toxicity is through over-
stimulation of the sodium ion channels, studies have shown other
pathways can be disrupted (Bownik and Wlodkowic, 2021). Pyrethroids
have been shown in both rats and fish to decrease acetylcholinesterase

(AChE) activity and impact learning and behavior (Marinowic et al.,
2012, Syed et al., 2016, Verma et al., 2021.). In the spotted snakehead
(Channa punctata) it was found that AChE activity was inhibited following
exposure to cyhalothrin and cypermethrin, with greater effects in the
cyhalothrin-exposed fish. In our study, cyhalothrin had slightly higher
effects on TDM than cypermethrin, but cypermethrin induced more thig-
motaxis behavior than cyhalothrin. Deltamethrin, another type II pyre-
throid, significantly increased thigmotaxis and anxiety-like behavior in
Zebra Rerio, which is consistent with the response to cypermethrin at the
lower salinities in Inland Silversides (Li et al., 2019). Cypermethrin also
inhibited AChE and induced hyperactivity in the stinging catfish
(Heteropneustes fossilis) (Tiwari et al., 2019). Inhibition of AChE leads to
increased acetylcholine (ACh) buildup which can desensitize the nicotinice
ACh receptors, leading to increased muscle weakness (Giniatullin and
Magazanik, 1998; Ullah et al., 2019a). Altered AChE activity and subse-
quent ACh accumulation may contribute to altered swimming behavior
via this mechanism (Ullah et al., 2019b). While there are a few studies
that assess one or two pyrethroids (Kumar et al., 2009; Tu et al., 2012;
Ensibi et al., 2014; Tiwari et al., 2019), the relative differences in AChE
activity between multiple pyrethroids or different abiotic conditions is an
area of research that could be explored further.

Zebra Rerio exposed to esfenvalerate at 0.02–8 μg/L exhibited
hypoactivity and decreased expression of dopamine active transporter
gene at 0.2 μg/L, which could influence neurological function and subse-
quently behavior (Wang et al., 2020). Bifenthrin has additionally been
shown to decrease the expression of dopamine receptor 1 gene (Bertotto
et al., 2018). The increased dopamine expression in Zebra Rerio exposed
to esfenvalerate was associated with boldness, whereas shyness was associ-
ated with a decrease in dopamine expression (Thörnqvist et al., 2019).
Boldness could be correlated to decreased anxiety (as seen with anti-
thigmotaxis) and shyness could be correlated to increased anxiety (like
thigmotaxis behavior). Here, esfenvalerate induced anti-thigmotaxis at
the lowest salinity (0.5 PSU) but had increased thigmotaxis behavior in
the higher two salinities (2 and 6 PSU), and neurological mechanisms

Fig. 2. Total distance moved (TDM) results relative to controls for individual pyrethroids (top horizontal labels), stimuli, concentrations, and salinity combinations (0.5, 2,
and 6 PSU; right vertical labels). Behavioral datawere binned byminute and normalized between 0 and 1 as described in themethods prior to analysis. Z-scorewas calculated
from the normalized data and is used for visualization purposes only; a negative z-score (purple) corresponds to decreased TDM (hypoactivity) and a positive z-score (orange)
corresponds to increased TDM (hyperactivity). * denotes significance, p < 0.05 (Dunn's Test). Bif = bifenthrin, Cyf = cyfluthrin, Cyh = cyhalothrin, Cyp= cypermethrin,
Esf = esfenvalerate, and Per = permethrin.
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may be leading to altered behavior are impacted by an increase in salinity.
In Delta Smelt, esfenvalerate induced a concentration-dependent effect
on swimming behavior that was correlated with downregulation of
the enzyme aspartoacylase (Connon et al., 2009). Downregulation of
aspartoacylase has been linked to changes in myelin, the sheaths that insu-
late axons and help regulate electrical impulses in the brain, which leads to
changes in neuroactivity and cognitive function (Wang et al., 2009), which
could also explain the resulting behavioral effects. Studies of Inland Silver-
sides and other teleost species that further explore dopamine and
aspartoacylase in connection to behavior would likely improve understand-
ing of the relationship between neurological pathways and behavior.

In addition to changes in sodiumchannel opening, dopamine activity, and
AChE inhibition, another mechanism throughwhich pyrethroids may induce
neurotoxicity and disrupt swimming behavior could be through interference
with ryanodine receptors (RYR) and mechanistic target of rapamycin
(mTOR) signaling pathways. Both of these pathways are involved in muscle
contraction olfactory, visual, and neural development and are shown to be
disrupted following pyrethroid exposure (Ma et al., 2015; Skalecka et al.,
2016; Frank et al., 2018; Stinson et al., 2022). Both Zebra Rerio and Inland
Silversides exposed to bifenthrin had altered expression of genes associated
with RYR and mTOR and effected behavior (Frank et al., 2018; Frank et al.,
2019). These effects may be partially responsible for the behavioral response
seen in Inland Silverside after bifenthrin exposure.

Cyfluthrin has been shown to cause DNA damage in fish as well as
changes in blood serum levels and liver and gill histology, but studies on

the neurotoxic effects of cyfluthrin in fish are scarce (Sepici-Dinçel et al.,
2009; Marinowic et al., 2012). Studies in 6–8-week-old mice have demon-
strated that cyfluthrin exposure increased expression of reactive oxygen
species (ROS), altered the structural morphology of the hippocampus, and
reduced learning ability (Verma et al., 2021). Cyfluthrin also caused
decrease AChE activity in rats, as seen in other pyrethroids for fish
(Marinowic et al., 2012, Syed et al., 2016.). Future mechanistic studies
could screen a range of pyrethroids to obtain clearer understanding of the
similarities and differences in the affected neurological pathways. Addi-
tionally, studying multiple abiotic conditions will continue to be important
as climate change alters ecosystems.

4.2. Pyrethroid toxicity across salinity

One hypothesis is that toxicity may differ across a salinity gradient
through changes in partitioning behavior of pyrethroids in salt water
compared to freshwater. Previous studies have found that bioconcentration
factor, log KOW, and water solubility are altered in salt water which may
contribute to different bioconcentration and toxicity (Saranjampour et al.,
2017). The pyrethroids used in this present study were assessed using the
same salinity conditions used by Hladik (2020) to determine how sorption
to the beakermay change during the different salinity treatments. Increased
salinity increased the fraction of pyrethroid in the water compared to that
sorbed to the glass beaker, which may have implications for bioavailability
of the pyrethroids in a laboratory beaker setting (Hladik, 2020). In contrast

Fig. 3.Number of significant differences found for each pyrethroid, salinity, and concentration (0.1, 1, 10, and/or 100 ng/L, right vertical labels) for thigmotaxis relative to
the respective control (p < 0.05; Dunn's test). Effects within each dark and light cycle were summarized together. A number below zero corresponds to significant anti-
thigmotaxis behavior, a number above zero corresponds to significant thigmotaxis behavior. A) Dark cycle for bifenthrin, cyfluthrin, and cyhalothrin. B) Dark cycle for
cypermethrin, esfenvalerate, and permethrin. C) Light cycle for bifenthrin, cyfluthrin, and cyhalothrin. D) Light cycle for cypermethrin, esfenvalerate, and permethrin.
The dark boarders represent data from the dark cycles and the light boarders represent data from the light cycles. Bif = bifenthrin, Cyf = cyfluthrin, Cyh = cyhalothrin,
Cyp = cypermethrin, Esf = esfenvalerate, and Per = permethrin.
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to what was found by Hladik (2020), the salting out effect would predict
that the pyrethroids would sorb more to the beaker, not the water, at the
higher salinities (Schwarzenbach et al., 2002). The salting out effect
explains that a lower portion of the compound would be present in the
water at higher salinities because it would be pushed either to the walls
of the beaker or into the organism by the increased rigidity of the saltwater
(Schwarzenbach et al., 2002). The Hladik (2020) experiments were con-
ducted using deionized water, and when no suspended solids are present
in the water, the pyrethroids may preferentially sorb to the beaker. The
presence of salt ions may have had the opposite effect as originally hypoth-
esized; instead of pushing the pyrethroids out of thewater, the salt ionsmay
have disrupted the pyrethroid molecules sorbing to the beaker, causing a
higher fraction to stay in the water column at the higher salinities. Our
experiments were similarly conducted without suspended solids in the
water which could imply a similar phenomenon may have occurred in
our test beakers. This is especially interesting since toxicity was overall
decreased at the higher salinities, given the increased concentration of py-
rethroid in the water at 6 PSU increased toxicity would be initially implied.
However, changes in biotic factors could also impact toxicity which may
explain why we saw an overall decrease in toxicity as salinity increased.

Our data suggest that as salinity increased there was a change in the
direction and strength of the relationship between chemical partitioning
and Inland Silverside thigmotaxis behavior. It is possible that the change
in partitioningwas not substantial enough between the 0.5 and 2 PSU expo-
sures to completely shift the direction of the relationship. However, the 0.5
and 6 PSU exposuresmay have large enough differences in ionic strength to
alter the relationship between log KOW and thigmotaxis. This could be
explained by the potential change in log KOW and water solubility that
occurs between fresh and salt water which can alter the bioavailability of
the pyrethroids (Saranjampour et al., 2017). Additionally, we saw that
the relationship between thigmotaxis behavior and pyrethroid type was
only significant in one concentration at the highest salinity but was signifi-
cant in all the concentrations at the lowest salinity. Others have found pyre-
throid type to be a significant factor in the type of toxicity that occurs

(Soderlund et al., 2002; Awoyemi et al., 2019). Possibly this relationship
is not as strong when salinity is involved since the compounds and organ-
isms physiology change in the new environment.

Another hypothesis is that toxicity is altered across salinity through biotic
changes in the organism. Changes in chemical metabolism across a salinity
gradient may explain why Inland Silversides exhibit a decrease in behavioral
response in the 6 PSU exposures. Enzymes responsible for metabolizing
chemicals have been shown to be altered in saline conditions (Zheng et al.,
2019). Increased metabolism could explain why less toxicity was observed
because the organisms would eliminate the pyrethroids more efficiently. A
study of permethrin in Inland Silverside found that bioaccumulation of the
parent compound was decreased in higher salinities (13 and 20 PSU) com-
pared to the lower salinity (6 PSU) (Derby et al., 2021). However, in a contra-
diction to this there were no significant differences in biotransformation of
permethrin between the three salinities, although these measurements were
done as part of a feeding experiment which may yield different results that
water exposures (Derby et al., 2021). Pyrethroid metabolism can also differ
between species (Ji et al., 2021),whichmay account for some of the observed
differences between Delta Smelt and Inland Silversides.

Osmoregulation has also been postulated as one reason toxicity
increases in studies because fish in saline water have increased energetic
demands and metabolic rate (Brooks et al., 2012). However, these studies
are more commonly performed on freshwater species exposed to low levels
of salinity, not euryhaline fish like the Inland Silverside. Euryhaline fish
likely have better ability to respond to chemical exposure during saline
conditions than fish less tolerant to saline conditions. In Delta Smelt
exposed to bifenthrin, a positive correlation between anti-thigmotaxis in
the light cycles and salinity was found, and bifenthrin had increased toxic-
ity at the highest salinity; meanwhile, permethrin toxicity had no correla-
tion to salinity (Segarra et al., 2021). Delta Smelt live in a lower salinity
range and spawn at lower salinities compared to Inland Silverside, which
can spawn at and tolerate salinities from 0 to 35 PSU. The species differ-
ences in salinity tolerance may explain some of the different responses to
pyrethroids between the two species.

Fig. 4. Thigmotaxis and anti-thigmotaxis behavior relative to controls for individual pyrethroids, stimuli, concentrations, and salinity (0.5, 2, and 6 PSU, right verticle labels).
Behavioral data were binned by minute and normalized between 0 and 1 prior to analysis. Z-score was calculated from the normalized data and is used for visualization
purposes only, a negative z-score (purple) corresponds to decreased wall hugging (anti-thigmotaxis) and a positive z-score (orange) corresponds to increased wall hugging
(thigmotaxis). * denotes significance, p < 0.05 (Dunn's Test). Bif = bifenthrin, Cyf = cyfluthrin, Cyh = cyhalothrin, Cyp = cypermethrin, Esf = esfenvalerate, and
Per = permethrin.
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4.3. Behavior in risk assessment and environmental management

Exposure to pyrethroids can also have long-lasting effects past the expo-
sure period, even on indirectly and unexposed generations, putting further
pressure on sensitive populations under stress (Blanc et al., 2020;
DeCourten et al., 2020; Major et al., 2020). Esfenvalerate increased preda-
tion risk in fathead minnows following only a short, four-hour exposure
window with effects continuing after a 20 h recovery period (Floyd et al.,
2008). Permethrin was found to induce hypoactivity in Zebra Rerio into
the F2 generation, which suggests the neurological toxicity of pyrethroids
can be transferred down the germline (Li et al., 2019). When Zebra Rerio
were exposed to bifenthrin, no significant differences were found after a
96-hour exposure, but hyperactivitywas detected following a 14-day recov-
ery period in clean water, demonstrating the potential for delayed effects
(Frank et al., 2018). Bifenthrin also induces transgenerational toxicity in
Inland Silversides at the molecular level (DeCourten et al., 2020, Major
et al., 2020); however, assessments of behavioral effects from bifenthrin
have not been done on subsequent generations to date.

At low concentrations, pyrethroids commonly display non-monotonic
responses, especially in endpoints related to cellularmechanisms and endo-
crine function. Here, we found examples of non-monotonic responses in
Inland Silverside behavioral response data. These responses commonly
appear near or below the no-observed-adverse-effect-level (NOAEL)
which is a value commonly used in risk assessments. This demonstrates a
discrepancy between traditional acute toxicity and more sensitive sub-
lethal tests which may be more predictive of long-term impacts (Jeffries
et al., 2015). Similar to concentrations tested here, pyrethroids can be

found in the SFBD at concentrations as high as 150 ng/L, indicating that
the responses seen from our laboratory study may be occurring in the
wild as well (Weston et al., 2019).

Traditional ecological risk assessment primarily relies on three main
apical endpoints: growth, reproduction, and mortality. However, concen-
trations of contaminants in the environment are rarely high enough to elicit
these types of responses. The concentrations used here, which are represen-
tative of those found in the SFBD, induced very little effects on growth but
caused significant behavioral effects across all pyrethroids and salinities.
Zebra Rerio exposed to 200 ng/L esfenvalerate similarly had no effects on
growth but did demonstrate changes in behavior (Wang et al., 2020).
Sub-lethal effects that contribute indirectly to population decline, such as
behavior, may be overlooked since these endpoints are less frequently
incorporated into risk assessments, even though experts in the field of
ecotoxicology agree it is an important endpoint to consider in ecological
conservation (Ford et al., 2021). Given the large backlog of risk assessments
needing to be conducted and the high throughput nature of behavioral
assays, behavioral assay could be standardized for risk assessment, but
hesitation remains around their reliability (Bownik and Wlodkowic,
2021; Ford et al., 2021).

As the use of behavioral assays increases, examples of consistent behav-
ioral effects in fish following exposure to a pollutant are emerging that can
be linked to population and community effects. For example, permethrin
has been demonstrated to repeatedly result in anti-thigmotaxis behavior.
In Delta Smelt, permethrin caused an overall decrease in thigmotaxis
behavior at all salinities, which is consistent with our findings (Segarra
et al., 2021). Permethrin was also found to decrease thigmotaxis in Zebra

Fig. 5. Logistic regression of log KOW (Table S2) and thigmotaxis behavior for all salinity and concentrations (ng/L). Pyrethroid type was also tested. The error bars denote
standard error of thigmotaxis response. Quasibinomial GLM output can be found in Table S3. * denotes p < 0.05 (generalized linear model).
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Rerio following only a 24-hour exposure. The effects from permethrin
exposure in the Zebra Rerio persisted into adulthood, where increased
aggression, which is attributed to decreased fear and anxiety link
thigmotaxis, was observed (Gerlai, 2010; Nunes et al., 2020). Decreases
in anxiety-like behavior may lead to greater risk taking and an increased
chance of predation, which contribute to population decline (Gerlai, 2010).

5. Conclusion

Here we compare the behavioral toxicity of Inland Silversides exposed to
six pyrethroids across three salinities. To our knowledge, this is the largest
number of pyrethroids compared across different salinities in any single
study and organism. Overall, we found that increased salinity resulted in a
decrease in the number of behavioral effects that the pyrethroids, except for
permethrin, had on Inland Silversides. This study accompanies similar work
conducted with Delta Smelt and informs risk assessors and managers in the
SFBD on how the toxicity of these common pyrethroids differs between the
more sensitive species, like Delta Smelt, and the less sensitive model fish,
Inland Silverside. Since Inland Silversides are frequently used as a surrogate
for Delta Smelt, understanding where uncertainty may exist in these assess-
ments could help in applications of the study results by risk assessors. For
example, bifenthrinwasmore toxic to Delta Smelt than permethrin; however,
permethrin was more toxic to Inland Silverside than bifenthrin. Therefore,
data from studies using Inland Silversides cannot be assumed to directly
apply to themore sensitive fish in the SFBD; thresholds safe for Inland Silver-
sides may not be safe for more sensitive species. Future work focused on
pyrethroid toxicity in estuaries, not just the SFBD, could assess how bioaccu-
mulation andmetabolismof pyrethroids change across salinities to determine
if one is more important in altering toxicity across a gradient. This informa-
tion could be incorporated into risk assessments and risk modeling to predict
how toxicity changes throughout an estuary.
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