7 research outputs found

    Partisanship and Opportunities for Additional Bipartisanship in Tech Immigration and Privacy Reform

    Get PDF
    This paper explores the history of technology and government by analyzing the longstanding partisan advantage Democrats have had in the Silicon Valley and other tech hubs. Additionally, this paper seeks out opportunities for bipartisanship, specifically in the legislative realms of tech privacy and immigration reform. Constituencies, committee assignments, fundraising and other environmental factors can help determine a politician\u27s level of interest in tech issues. Specifically, upon analyzing these factors, bipartisanship appears to be more likely in privacy reform than in immigration reform

    The neurotoxin DSP-4 dysregulates the locus coeruleus-norepinephrine system and recapitulates molecular and behavioral aspects of prodromal neurodegenerative disease

    Get PDF
    The noradrenergic locus coeruleus (LC) is among the earliest sites of tau and α-synuclein pathology in Alzheimer\u27s disease (AD) and Parkinson\u27s disease (PD), respectively. The onset of these pathologies coincides with loss of noradrenergic fibers in LC target regions and the emergence of prodromal symptoms including sleep disturbances and anxiety. Paradoxically, these prodromal symptoms are indicative of a noradrenergic hyperactivity phenotype, rather than the predicted loss of norepinephrine (NE) transmission following LC damage, suggesting the engagement of complex compensatory mechanisms. Because current therapeutic efforts are targeting early disease, interest in the LC has grown, and it is critical to identify the links between pathology and dysfunction. We employed the LC-specific neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), which preferentially damages LC axons, to model early changes in the LC-NE system pertinent to AD and PD in male and female mice. DSP-4 (two doses of 50 mg/kg, one week apart) induced LC axon degeneration, triggered neuroinflammation and oxidative stress, and reduced tissue NE levels. There was no LC cell death or changes to LC firing, but transcriptomics revealed reduced expression of genes that define noradrenergic identity and other changes relevant to neurodegenerative disease. Despite the dramatic loss of LC fibers, NE turnover and signaling were elevated in terminal regions and were associated with anxiogenic phenotypes in multiple behavioral tests. These results represent a comprehensive analysis of how the LC-NE system responds to axon/terminal damage reminiscent of early AD and PD at the molecular, cellular, systems, and behavioral levels, and provides potential mechanisms underlying prodromal neuropsychiatric symptoms

    Frequency-tuned electromagnetic field therapy improves post-stroke motor function: A pilot randomized controlled trial.

    No full text
    BACKGROUND AND PURPOSE: Impaired upper extremity (UE) motor function is a common disability after ischemic stroke. Exposure to extremely low frequency and low intensity electromagnetic fields (ELF-EMF) in a frequency-specific manner (Electromagnetic Network Targeting Field therapy; ENTF therapy) is a non-invasive method available to a wide range of patients that may enhance neuroplasticity, potentially facilitating motor recovery. This study seeks to quantify the benefit of the ENTF therapy on UE motor function in a subacute ischemic stroke population. METHODS: In a randomized, sham-controlled, double-blind trial, ischemic stroke patients in the subacute phase with moderately to severely impaired UE function were randomly allocated to active or sham treatment with a novel, non-invasive, brain computer interface-based, extremely low frequency and low intensity ENTF therapy (1-100 Hz, < 1 G). Participants received 40 min of active ENTF or sham treatment 5 days/week for 8 weeks; ~three out of the five treatments were accompanied by 10 min of concurrent physical/occupational therapy. Primary efficacy outcome was improvement on the Fugl-Meyer Assessment - Upper Extremity (FMA-UE) from baseline to end of treatment (8 weeks). RESULTS: In the per protocol set (13 ENTF and 8 sham participants), mean age was 54.7 years (±15.0), 19% were female, baseline FMA-UE score was 23.7 (±11.0), and median time from stroke onset to first stimulation was 11 days (interquartile range (IQR) 8-15). Greater improvement on the FMA-UE from baseline to week 4 was seen with ENTF compared to sham stimulation, 23.2 ± 14.1 vs. 9.6 ± 9.0, p = 0.007; baseline to week 8 improvement was 31.5 ± 10.7 vs. 23.1 ± 14.1. Similar favorable effects at week 8 were observed for other UE and global disability assessments, including the Action Research Arm Test (Pinch, 13.4 ± 5.6 vs. 5.3 ± 6.5, p = 0.008), Box and Blocks Test (affected hand, 22.5 ± 12.4 vs. 8.5 ± 8.6, p < 0.0001), and modified Rankin Scale (-2.5 ± 0.7 vs. -1.3 ± 0.7, p = 0.0005). No treatment-related adverse events were reported. CONCLUSIONS: ENTF stimulation in subacute ischemic stroke patients was associated with improved UE motor function and reduced overall disability, and results support its safe use in the indicated population. These results should be confirmed in larger multicenter studies. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT04039178, identifier: NCT04039178

    Retrotransposons Are the Major Contributors to the Expansion of the Drosophila ananassae Muller F Element

    No full text
    The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (∼5.2 Mb) is the smallest chromosome in Drosophila melanogaster, but it is substantially larger (>18.7 Mb) in D. ananassae. To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the D. ananassae F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%). Both D. melanogaster and D. ananassae F-element genes exhibit distinct characteristics compared to D-element genes (e.g., larger coding spans, larger introns, more coding exons, and lower codon bias), but these differences are exaggerated in D. ananassae. Compared to D. melanogaster, the codon bias observed in D. ananassae F-element genes can primarily be attributed to mutational biases instead of selection. The 5′ ends of F-element genes in both species are enriched in dimethylation of lysine 4 on histone 3 (H3K4me2), while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F-element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains
    corecore