97 research outputs found

    Periodic variations in the O-C diagrams of five pulsation frequencies of the DB white dwarf EC 20058-5234

    Get PDF
    Variations in the pulsation arrival time of five independent pulsation frequencies of the DB white dwarf EC 20058−5234 individually imitate the effects of reflex motion induced by a planet or companion but are inconsistent when considered in unison. The pulsation frequencies vary periodically in a 12.9 year cycle and undergo secular changes that are inconsistent with simple neutrino plus photon-cooling models. The magnitude of the periodic and secular variations increases with the period of the pulsations, possibly hinting that the corresponding physical mechanism is located near the surface of the star. The phase of the periodic variations appears coupled to the sign of the secular variations. The standards for pulsation-timing-based detection of planetary companions around pulsating white dwarfs, and possibly other variables such as subdwarf B stars, should be re-evaluated. The physical mechanism responsible for this surprising result may involve a redistribution of angular momentum or a magnetic cycle. Additionally, variations in a supposed combination frequency are shown to match the sum of the variations of the parent frequencies to remarkable precision, an expected but unprecedented confirmation of theoretical predictions.Web of Scienc

    Whole Earth Telescope discovery of a strongly distorted quadrupole pulsation in the largest amplitude rapidly oscillating Ap star

    Get PDF
    We present a new analysis of the rapidly oscillating Ap (roAp) star, 2MASS J19400781 − 4420093 (J1940; V = 13.1). The star was discovered using SuperWASP broadband photometry to have a frequency of 176.39 d−1 (2041.55 ”Hz; P = 8.2 min; Holdsworth et al. 2014a) and is shown here to have a peak-to-peak amplitude of 34 mmag. J1940 has been observed during three seasons at the South African Astronomical Ob- servatory, and has been the target of a Whole Earth Telescope campaign. The observations reveal that J1940 pulsates in a distorted quadrupole mode with unusual pulsational phase variations. A higher signal-to-noise ratio spectrum has been obtained since J1940’s first announcement, which allows us to classify the star as A7 Vp Eu(Cr). The observing campaigns presented here reveal no pulsations other than the initially detected frequency. We model the pulsation in J1940 and conclude that the pulsation is distorted by a magnetic field of strength 1.5 kG. A difference in the times of rotational maximum light and pulsation maximum suggests a significant offset between the spots and pulsation axis, as can be seen in roAp stars

    GJ 1252 b: A 1.2 R\u3csub\u3e⊕\u3c/sub\u3e Planet Transiting An M3 Dwarf At 20.4 pc

    Get PDF
    We report the discovery of GJ 1252 b, a planet with a radius of 1.193 ± 0.074 R⊕ and an orbital period of 0.52 days around an M3-type star (0.381 ± 0.019 M⊕, 0.391 ± 0.020 R⊕) located 20.385 ± 0.019 pc away. We use Transiting Exoplanet Survey Satellite (TESS) data, ground-based photometry and spectroscopy, Gaia astrometry, and high angular resolution imaging to show that the transit signal seen in the TESS data must originate from a transiting planet. We do so by ruling out all false-positive scenarios that attempt to explain the transit signal as originating from an eclipsing stellar binary. Precise Doppler monitoring also leads to a tentative mass measurement of 2.09 ± 0.56 M⊕. The host star proximity, brightness (V = 12.19 mag, K = 7.92 mag), low stellar activity, and the system\u27s short orbital period make this planet an attractive target for detailed characterization, including precise mass measurement, looking for other objects in the system, and planet atmosphere characterization

    Wavelength-resolved Reverberation Mapping of quasar CTSC30.10: Dissecting MgII and FeII emission regions

    Get PDF
    We present the results of the reverberation monitoring aimed at MgII broad line and FeII pseudocontinuum for the luminous quasar CTS C30.10 (z = 0.90052) with the Southern African Large Telescope covering the years 2012-2021. We aimed at disentangling the MgII and UV FeII variability and the first measurement of UV FeII time delay for a distant quasar. We used several methods for time-delay measurements and determined both FeII and MgII time delays as well as performed a wavelength-resolved time delay study for a combination of MgII and FeII in the 2700 - 2900 \AA restframe wavelength range. We obtain the time delay for MgII of 275.5−19.5+12.4275.5^{+12.4}_{-19.5} days in the rest frame, while for FeII we have two possible solutions of 270.0−25.3+13.8270.0^{+13.8}_{-25.3} days and 180.3−30.0+26.6180.3^{+26.6}_{-30.0} in the rest frame. Combining this result with the old measurement of FeII UV time delay for NGC 5548 we discuss for the first time the radius-luminosity relation for UV FeII with the slope consistent with 0.50.5 within uncertainties. Since FeII time delay has a shorter time-delay component but lines are narrower than MgII, we propose that the line delay measurement is biased towards the BLR part facing the observer, with the bulk of the Fe II emission may arise from the more distant BLR region, one that is shielded from the observer.Comment: 22 pages, 19 Figures, 6 Tables, Submitted to Astronomy and Astrophysics, Comments are welcom
    • 

    corecore