1,530 research outputs found

    Shape of a liquid front upon dewetting

    Full text link
    We examine the profile of a liquid front of a film that is dewetting a solid substrate. Since volume is conserved, the material that once covered the substrate is accumulated in a rim close to the three phase contact line. Theoretically, such a profile of a Newtonian liquid resembles an exponentially decaying harmonic oscillation that relaxes into the prepared film thickness. For the first time, we were able to observe this behavior experimentally. A non-Newtonian liquid - a polymer melt - however, behaves differently. Here, viscoelastic properties come into play. We will demonstrate that by analyzing the shape of the rim profile. On a nm scale, we gain access to the rheology of a non-Newtonian liquid.Comment: 4 pages, 4 figure

    pZMO7-Derived shuttle vectors for heterologous protein expression and proteomic applications in the ethanol-producing bacterium Zymomonas mobilis

    Get PDF
    Background The ethanol-producing bacterium Zymomonas mobilis has attracted considerable scientific and commercial interest due to its exceptional physiological properties. Shuttle vectors derived from native plasmids have previously been successfully used for heterologous gene expression in this bacterium for a variety of purposes, most notably for metabolic engineering applications. Results A quantitative PCR (qPCR) approach was used to determine the copy numbers of two endogenous double stranded DNA plasmids: pZMO1A (1,647 bp) and pZMO7 (pZA1003; 4,551 bp) within the NCIMB 11163 strain of Z. mobilis. Data indicated pZMO1A and pZMO7 were present at ca. 3-5 and ca. 1-2 copies per cell, respectively. A ca. 1,900 bp fragment from plasmid pZMO7 was used to construct two Escherichia coli - Z. mobilis shuttle vectors (pZ7C and pZ7-184). The intracellular stabilities and copy numbers of pZ7C and pZ7-184 were characterized within the NCIMB 11163, ATCC 29191 and (ATCC 10988-derived) CU1 Rif2 strains of Z. mobilis. Both shuttle vectors could be stably maintained within the ATCC 29191 strain (ca. 20-40 copies per cell), and the CU1 Rif2 strain (ca. 2-3 copies per cell), for more than 50 generations in the absence of an antibiotic selectable marker. A selectable marker was required for shuttle vector maintenance in the parental NCIMB 11163 strain; most probably due to competition for replication with the endogenous pZMO7 plasmid molecules. N-terminal glutathione S-transferase (GST)-fusions of four endogenous proteins, namely the acyl-carrier protein (AcpP); 2-dehydro-3-deoxyphosphooctonate aldolase (KdsA); DNA polymerase III chi subunit (HolC); and the RNA chaperone protein Hfq; were successfully expressed from pZ7C-derived shuttle vectors, and their protein-protein binding interactions were analyzed in Z. mobilis ATCC 29191. Using this approach, proteins that co-purified with AcpP and KdsA were identified. Conclusions We show that a shuttle vector-based protein affinity 'pull-down' approach can be used to probe protein interaction networks in Z. mobilis cells. Our results demonstrate that protein expression plasmids derived from pZMO7 have significant potential for use in future biological or biotechnological applications within Z. mobilis.published_or_final_versio

    Diffusive and ballistic current spin-polarization in magnetron-sputtered L1o-ordered epitaxial FePt

    Full text link
    We report on the structural, magnetic, and electron transport properties of a L1o-ordered epitaxial iron-platinum alloy layer fabricated by magnetron-sputtering on a MgO(001) substrate. The film studied displayed a long range chemical order parameter of S~0.90, and hence has a very strong perpendicular magnetic anisotropy. In the diffusive electron transport regime, for temperatures ranging from 2 K to 258 K, we found hysteresis in the magnetoresistance mainly due to electron scattering from magnetic domain walls. At 2 K, we observed an overall domain wall magnetoresistance of about 0.5 %. By evaluating the spin current asymmetry alpha = sigma_up / sigma_down, we were able to estimate the diffusive spin current polarization. At all temperatures ranging from 2 K to 258 K, we found a diffusive spin current polarization of > 80%. To study the ballistic transport regime, we have performed point-contact Andreev-reflection measurements at 4.2 K. We obtained a value for the ballistic current spin polarization of ~42% (which compares very well with that of a polycrystalline thin film of elemental Fe). We attribute the discrepancy to a difference in the characteristic scattering times for oppositely spin-polarized electrons, such scattering times influencing the diffusive but not the ballistic current spin polarization.Comment: 22 pages, 13 figure

    Dewetting of thin polymer films near the glass transition

    Full text link
    Dewetting of ultra-thin polymer films near the glass transition exhibits unexpected front morphologies [G. Reiter, Phys. Rev. Lett., 87, 186101 (2001)]. We present here the first theoretical attempt to understand these features, focusing on the shear-thinning behaviour of these films. We analyse the profile of the dewetting film, and characterize the time evolution of the dry region radius, Rd(t)R_{d}(t), and of the rim height, hm(t)h_{m}(t). After a transient time depending on the initial thickness, hm(t)h_{m}(t) grows like t\sqrt{t} while Rd(t)R_{d}(t) increases like exp(t)\exp{(\sqrt{t})}. Different regimes of growth are expected, depending on the initial film thickness and experimental time range.Comment: 4 pages, 5 figures Revised version, published in Physical Review Letters: F. Saulnier, E. Raphael and P.-G. de Gennes, Phys. Rev. Lett. 88, 196101 (2002

    Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution

    Get PDF
    The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB

    A Note on the Nonlinear Modelling of Piezoelectric Rods

    Get PDF

    A Note on a Nonlinear Model of a Piezoelectric Rod

    Get PDF

    Vibro-acoustical Behavior of a Turbocharger Housing Excited by Oil-film Induced Rotor Oscillations

    Get PDF
    This paper deals with the interaction of the turbocharger housing and the rotor to reveal the acoustic phenomena which are excited by the oil whirl/whip instabilities. Therefore, a flexible multibody model is built up for the rotor subsystem which is supported in floating ring bearings. The flexibility of the housing subsystem is taken into account by considering it as a modally reduced structure within the multibody simulation model. Primarily, the two subsystems are simulated sequentially. The first step gives the oil film forces during a typical run-up simulation of the rotor subsystem if the bearing shell deformation is neglected. In a second step, the obtained oil film forces are applied at the decoupled housing structure to analyze the vibro-acoustics of the turbocharger in detail. The vibro-acoustical behavior is judged by the occurring housing amplitudes which are predominantly influenced by the mounting concept of the turbocharger on the engine. It is found out that the subsynchronous excitation due to the oil films can be magnified through the housing structure in a quite wide speed range which is the main excitation mechanism affecting the acoustics of turbochargers. Finally, the run-up simulation is performed for the coupled subsystems of rotor and housing where the oil film forces are also dependent on the local deformation of the bearing housing
    corecore