739 research outputs found

    Shape of a liquid front upon dewetting

    Full text link
    We examine the profile of a liquid front of a film that is dewetting a solid substrate. Since volume is conserved, the material that once covered the substrate is accumulated in a rim close to the three phase contact line. Theoretically, such a profile of a Newtonian liquid resembles an exponentially decaying harmonic oscillation that relaxes into the prepared film thickness. For the first time, we were able to observe this behavior experimentally. A non-Newtonian liquid - a polymer melt - however, behaves differently. Here, viscoelastic properties come into play. We will demonstrate that by analyzing the shape of the rim profile. On a nm scale, we gain access to the rheology of a non-Newtonian liquid.Comment: 4 pages, 4 figure

    Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution

    Get PDF
    The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB

    Dewetting of thin polymer films near the glass transition

    Full text link
    Dewetting of ultra-thin polymer films near the glass transition exhibits unexpected front morphologies [G. Reiter, Phys. Rev. Lett., 87, 186101 (2001)]. We present here the first theoretical attempt to understand these features, focusing on the shear-thinning behaviour of these films. We analyse the profile of the dewetting film, and characterize the time evolution of the dry region radius, Rd(t)R_{d}(t), and of the rim height, hm(t)h_{m}(t). After a transient time depending on the initial thickness, hm(t)h_{m}(t) grows like t\sqrt{t} while Rd(t)R_{d}(t) increases like exp(t)\exp{(\sqrt{t})}. Different regimes of growth are expected, depending on the initial film thickness and experimental time range.Comment: 4 pages, 5 figures Revised version, published in Physical Review Letters: F. Saulnier, E. Raphael and P.-G. de Gennes, Phys. Rev. Lett. 88, 196101 (2002

    The Dominant Australian Community-Acquired Methicillin-Resistant Staphylococcus aureus Clone ST93-IV [2B] Is Highly Virulent and Genetically Distinct

    Get PDF
    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) USA300 has spread rapidly across North America, and CA-MRSA is also increasing in Australia. However, the dominant Australian CA-MRSA strain, ST93-IV [2B] appears distantly related to USA300 despite strikingly similar clinical and epidemiological profiles. Here, we compared the virulence of a recent Australian ST93 isolate (JKD6159) to other MRSA, including USA300, and found that JKD6159 was the most virulent in a mouse skin infection model. We fully sequenced the genome of JKD6159 and confirmed that JKD6159 is a distinct clone with 7616 single nucleotide polymorphisms (SNPs) distinguishing this strain from all other S. aureus genomes. Despite its high virulence there were surprisingly few virulence determinants. However, genes encoding α-hemolysin, Panton-Valentine leukocidin (PVL) and α-type phenol soluble modulins were present. Genome comparisons revealed 32 additional CDS in JKD6159 but none appeared to encode new virulence factors, suggesting that this clone's enhanced pathogenicity could lie within subtler genome changes, such as SNPs within regulatory genes. To investigate the role of accessory genome elements in CA-MRSA epidemiology, we next sequenced three additional Australian non-ST93 CA-MRSA strains and compared them with JKD6159, 19 completed S. aureus genomes and 59 additional S. aureus genomes for which unassembled genome sequence data was publicly available (82 genomes in total). These comparisons showed that despite its distinctive genotype, JKD6159 and other CA-MRSA clones (including USA300) share a conserved repertoire of three notable accessory elements (SSCmecIV, PVL prophage, and pMW2). This study demonstrates that the genetically distinct ST93 CA-MRSA from Australia is highly virulent. Our comparisons of geographically and genetically diverse CA-MRSA genomes suggest that apparent convergent evolution in CA-MRSA may be better explained by the rapid dissemination of a highly conserved accessory genome from a common source

    Submicrometer Pattern Fabrication by Intensification of Instability in Ultrathin Polymer Films under a Water-Solvent Mix

    Full text link
    Dewetting of ultrathin (< 100 nm) polymer films, by heating above the glass transition, produces droplets of sizes of the order of microns and mean separations between droplets of the order of tens of microns. These relatively large length scales are because of the weak destabilizing van der Waals forces and the high surface energy penalty required for deformations on small scales. We show a simple, one-step versatile method to fabricate sub-micron (>~100 nm) droplets and their ordered arrays by room temperature dewetting of ultrathin polystyrene (PS) films by minimizing these limitations. This is achieved by controlled room temperature dewetting under an optimal mixture of water, acetone and methyl-ethyl ketone (MEK). Diffusion of organic solvents in the film greatly reduces its glass transition temperature and the interfacial tension, but enhances the destabilizing field by introduction of electrostatic force. The latter is reflected in a change in the exponent, n of the instability length scale, {\lambda} ~h^n, where h is the film thickness and n = 1.51 \pm 0.06 in the case of water-solvent mix, as opposed to its value of 2.19 \pm 0.07 for dewetting in air. The net outcome is more than one order of magnitude reduction in the droplet size as well as their mean separation and also a much faster dynamics of dewetting. We also demonstrate the use of this technique for controlled dewetting on topographically patterned substrates with submicrometer features where dewetting in air is either arrested, incomplete or unable to produce ordered patterns

    Placement and orientation of individual DNA shapes on lithographically patterned surfaces

    Get PDF
    Artificial DNA nanostructures show promise for the organization of functional materials to create nanoelectronic or nano-optical devices. DNA origami, in which a long single strand of DNA is folded into a shape using shorter 'staple strands', can display 6-nm-resolution patterns of binding sites, in principle allowing complex arrangements of carbon nanotubes, silicon nanowires, or quantum dots. However, DNA origami are synthesized in solution and uncontrolled deposition results in random arrangements; this makes it difficult to measure the properties of attached nanodevices or to integrate them with conventionally fabricated microcircuitry. Here we describe the use of electron-beam lithography and dry oxidative etching to create DNA origami-shaped binding sites on technologically useful materials, such as SiO_2 and diamond-like carbon. In buffer with ~ 100 mM MgCl_2, DNA origami bind with high selectivity and good orientation: 70–95% of sites have individual origami aligned with an angular dispersion (±1 s.d.) as low as ±10° (on diamond-like carbon) or ±20° (on SiO_2)

    Single Nucleotide Polymorphism Typing of Mycobacterium ulcerans Reveals Focal Transmission of Buruli Ulcer in a Highly Endemic Region of Ghana

    Get PDF
    Buruli ulcer (BU) is an emerging necrotizing disease of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. While proximity to stagnant or slow flowing water bodies is a risk factor for acquiring BU, the epidemiology and mode of M. ulcerans transmission is poorly understood. Here we have used high-throughput DNA sequencing and comparisons of the genomes of seven M. ulcerans isolates that appeared monomorphic by existing typing methods. We identified a limited number of single nucleotide polymorphisms (SNPs) and developed a real-time PCR SNP typing method based on these differences. We then investigated clinical isolates of M. ulcerans on which we had detailed information concerning patient location and time of diagnosis. Within the Densu river basin of Ghana we observed dominance of one clonal complex and local clustering of some of the variants belonging to this complex. These results reveal focal transmission and demonstrate, that micro-epidemiological analyses by SNP typing has great potential to help us understand how M. ulcerans is transmitted
    corecore