28 research outputs found

    The Centrosomal Kinase Plk1 Localizes to the Transition Zone of Primary Cilia and Induces Phosphorylation of Nephrocystin-1

    Get PDF
    Polo-like kinase (Plk1) plays a central role in regulating the cell cycle. Plk1-mediated phosphorylation is essential for centrosome maturation, and for numerous mitotic events. Although Plk1 localizes to multiple subcellular sites, a major site of action is the centrosomes, which supports mitotic functions in control of bipolar spindle formation. In G0 or G1 untransformed cells, the centriolar core of the centrosome differentiates into the basal body of the primary cilium. Primary cilia are antenna-like sensory organelles dynamically regulated during the cell cycle. Whether Plk1 has a role in ciliary biology has never been studied. Nephrocystin-1 (NPHP1) is a ciliary protein; loss of NPHP1 in humans causes nephronophthisis (NPH), an autosomal-recessive cystic kidney disease. We here demonstrate that Plk1 colocalizes with nephrocystin-1 to the transition zone of primary cilia in epithelial cells. Plk1 co-immunoprecipitates with NPHP1, suggesting it is part of the nephrocystin protein complex. We identified a candidate Plk1 phosphorylation motif (D/E-X-S/T-φ-X-D/E) in nephrocystin-1, and demonstrated in vitro that Plk1 phosphorylates the nephrocystin N-terminus, which includes the specific PLK1 phosphorylation motif. Further, induced disassembly of primary cilia rapidly evoked Plk1 kinase activity, while small molecule inhibition of Plk1 activity or RNAi-mediated downregulation of Plk1 limited the first and second phase of ciliary disassembly. These data identify Plk1 as a novel transition zone signaling protein, suggest a function of Plk1 in cilia dynamics, and link Plk1 to the pathogenesis of NPH and potentially other cystic kidney diseases

    Estrogen receptor alpha (ER alpha) indirectly induces transcription of human renal organic anion transporter 1 (OAT1)

    No full text
    Organic anion transporter 1 (OAT1) is a polyspecific transport protein located in the basolateral membrane of renal proximal tubule cells. OAT1 plays a pivotal role in drug clearance. Adverse drug reactions (ADR) are observed more frequently in women than in men, especially ADR are higher in women for drugs which are known interactors of OAT1. Sex-dependent expression of Oat1 has been observed in rodents with a tendency to male-dominant expression. This study aims at elucidating the transcriptional regulation of human OAT1 and tests the effect of estrogen receptor alpha (ER alpha). Promoter activation of OAT1 was assessed by luciferase assays carried out by Opossum kidney (OK) cells, transiently transfected with promoter constructs of human OAT1 and expression vectors for ER alpha and exposed to 100 nmol/L 17 beta-estradiol. Furthermore, a transcription factor array and proteomic analysis was performed to identify estrogen-induced transcription factors. Human OAT1 was significantly activated by ligand activated ER alpha. However, activation occurred without a direct interaction of ER alpha with the OAT1 promoter. Our data rather show an activation of the transcription factors CCAAT-box-binding transcription factor (CBF) and heterogeneous nuclear ribonucleoprotein K (HNRNPK) by ER alpha, which in turn bind and initiate OAT1 promoter activity. Herewith, we provide novel evidence of estrogen-dependent, transcriptional regulation of polyspecific drug transporters including the estrogen-induced transcription factors CBF and HNRNPK

    Inhibiting Heat Shock Protein 90 (HSP90) Limits the Formation of Liver Cysts Induced by Conditional Deletion of Pkd1 in Mice

    No full text
    Polycystic liver disease (PLD) occurs in 75-90% of patients affected by autosomal dominant polycystic kidney disease (ADPKD), which affects 1: 400-1,000 adults and arises from inherited mutations in the PKD1 or PKD2 genes. PLD can lead to bile duct obstructions, infected or bleeding cysts, and hepatomegaly, which can diminish quality of life. At present, no effective, approved therapy exists for ADPKD or PLD. We recently showed that inhibition of the molecular chaperone heat shock protein 90 (HSP90) with a small molecule inhibitor, STA-2842, induced the degradation of multiple HSP90-dependent client proteins that contribute to ADPKD pathogenesis and slowed the progression of renal cystogenesis in mice with conditional deletion of Pkd1. Here, we analyzed the effects of STA-2842 on liver size and cystic burden in Pkd(-/-) mice with established PLD. Using magnetic resonance imaging over time, we demonstrate that ten weeks of STA-2842 treatment significantly reduced both liver mass and cystic index suggesting selective elimination of cystic tissue. Pre-treatment cystic epithelia contain abundant HSP90; the degree of reduction in cysts was accompanied by inhibition of proliferation-associated signaling proteins EGFR and others, and induced cleavage of caspase 8 and PARP1, and correlated with degree of HSP90 inhibition and with inactivation of ERK1/2. Our results suggest that HSP90 inhibition is worth further evaluation as a therapeutic approach for patients with PLD

    Evaluation of body-surface-area adjusted dosing of high-dose methotrexate by population pharmacokinetics in a large cohort of cancer patients

    No full text
    Background The aim of this study was to identify sources of variability including patient gender and body surface area (BSA) in pharmacokinetic (PK) exposure for high-dose methotrexate (MTX) continuous infusion in a large cohort of patients with hematological and solid malignancies. Methods We conducted a retrospective PK analysis of MTX plasma concentration data from hematological/oncological patients treated at the University Hospital of Cologne between 2005 and 2018. Nonlinear mixed effects modeling was performed. Covariate data on patient demographics and clinical chemistry parameters was incorporated to assess relationships with PK parameters. Simulations were conducted to compare exposure and probability of target attainment (PTA) under BSA adjusted, flat and stratified dosing regimens. Results Plasma concentration over time data (2182 measurements) from therapeutic drug monitoring from 229 patients was available. PK of MTX were best described by a three-compartment model. Values for clearance (CL) of 4.33 [2.95-5.92] L h(- 1) and central volume of distribution of 4.29 [1.81-7.33] L were estimated. An inter-occasion variability of 23.1% (coefficient of variation) and an inter-individual variability of 29.7% were associated to CL, which was 16 [7-25] % lower in women. Serum creatinine, patient age, sex and BSA were significantly related to CL of MTX. Simulations suggested that differences in PTA between flat and BSA-based dosing were marginal, with stratified dosing performing best overall. Conclusion A dosing scheme with doses stratified across BSA quartiles is suggested to optimize target exposure attainment. Influence of patient sex on CL of MTX is present but small in magnitude

    Plk1 colocalizes with NPHP1 at the base of the cilium.

    No full text
    <p><b>A</b> Ciliated hTERT-RPE1 (human retinal pigmented epithelial cells and HK2 human kidney cells were stained with antibody to Plk1 (green), acetylated α-tubulin (orange), and γ-tubulin (red), and treated with DAPI to visualize DNA (blue). The scale bar represents 5 µm. <b>B</b> Ciliated hTERT-RPE1 cells and HK2 cells were stained with antibody to acetylated α-tubulin (orange), γ-tubulin (red), to NPHP1 or Plk1 as indicated (green), and with DAPI to visualize DNA (blue). The third row shows merged signals from staining with antibody to Plk1 (orange), NPHP1 (green) acetylated α-tubulin (orange), γ-tubulin (red) and DAPI was used to visualize DNA (blue). The scale bar represents 5 µm.</p

    Plk1 associates with NPHP1.

    No full text
    <p><b>A</b> Western blot of immunoprecipitates (IP) or lysates (Lys) from HEK293T cells co-transfected with plasmids expressing V5-tagged NPHP1 and Flag-tagged Plk1 or negative control protein (Eps1–225 <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038838#pone.0038838-Habbig1" target="_blank">[13]</a>). β-actin was assessed as a loading control. <b>B</b> Western blot of immunoprecipitates (IP) or cell lysates (Lys) from HEK293T cells co-transfected with plasmids expressing Myc-tagged Plk1 and Flag-tagged NPHP1 or empty Flag vector. <b>C</b> Western blot of immunoprecipitates (IP) or cell lysates (Lys) from HEK293T cells transfected with plasmid expressing Flag-tagged NPHP1 or the negative control protein (Eps1–225 <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038838#pone.0038838-Habbig1" target="_blank">[13]</a>). Endogenous Plk1 was detected using a specific antibody against Plk1. <b>D</b> A panel of Flag-tagged NPHP1 derivatives, including truncations, internal deletions and a T87A mutant, was analyzed by co-immunoprecipitation with Myc-tagged Plk1. <b>E</b> Western analysis of immunoprecipitates (IP) or cell lysates (Lys) from HEK293T cells co-transfected with plasmids expressing Myc-tagged Plk1 and Flag-tagged NPHP1 constructs as indicated, or the Flag-tagged control protein (Eps1–225). * indicates immunoglobulin heavy chain.</p

    COVID-19 complicated by parainfluenza co-infection in a patient with chronic lymphocytic leukemia

    No full text
    The number of people suffering from the new coronavirus SARS-CoV-2 continues to rise. In SARS-CoV-2, superinfection with bacteria or fungi seems to be associated with increased mortality. The role of co-infections with respiratory viral pathogens has not yet been clarified. Here, we report the course of COVID-19 in a CLL patient with secondary immunodeficiency and viral co-infection with parainfluenza

    Plk1 directly phosphorylates NPHP1 in vitro.

    No full text
    <p><b>A</b> Alignment of NPHP1 protein sequences from multiple species indicates a conserved candidate Plk1 motif at position T87. <b>B</b> An <i>in vitro</i> kinase assay performed with active Plk1 and recombinant His-fused NPHP1 protein indicates phosphorylation within the NPHP1 N-terminal 205 amino acids. CB, Coomassie Blue.</p

    A RASSF1A-HIF1 alpha loop drives Warburg effect in cancer and pulmonary hypertension

    No full text
    Hypoxia signaling plays a major role in non-malignant and malignant hyperproliferative diseases. Pulmonary hypertension (PH), a hypoxia-driven vascular disease, is characterized by a glycolytic switch similar to the Warburg effect in cancer. Ras association domain family 1A (RASSF1A) is a scaffold protein that acts as a tumour suppressor. Here we show that hypoxia promotes stabilization of RASSF1A through NOX-1- and protein kinase C- dependent phosphorylation. In parallel, hypoxia inducible factor-1 alpha (HIF-1 alpha) activates RASSF1A transcription via HIF-binding sites in the RASSF1A promoter region. Vice versa, RASSF1A binds to HIF-1 alpha, blocks its prolyl-hydroxylation and proteasomal degradation, and thus enhances the activation of the glycolytic switch. We find that this mechanism operates in experimental hypoxia-induced PH, which is blocked in RASSF1A knockout mice, in human primary PH vascular cells, and in a subset of human lung cancer cells. We conclude that RASSF1A-HIF-1 alpha forms a feedforward loop driving hypoxia signaling in PH and cancer
    corecore