2,374 research outputs found
Theory for nucleation at an interface and magnetization reversal of a two-layer nanowire
Nucleation at the interface between two adjoining regions with dissimilar physical properties is investigated using a model for magnetization reversal of a two-layer ferromagnetic nanowire. Each layer of the nanowire is considered to have a different degree of magnetic anisotropy, representing a hard magnetic layer exchange-coupled to a softer layer. A magnetic field applied along the easy axis causes the softer layer to reverse, forming a domain wall close to the interface. For small applied fields this state is metastable and complete reversal of the nanowire takes place via activation over a barrier. A reversal mechanism involving nucleation at an interface is proposed, whereby a domain wall changes in width as it passes from the soft layer to the hard layer during activation. Langer’s statistical theory for the decay of a metastable state is used to derive rates of magnetization reversal, and simple formulas are found in limiting cases for the activation energy, rate of reversal, and critical field at which the metastable state becomes unstable. These formulas depend on the anisotropy difference between each layer, and the behavior of the reversal rate prefactor is interpreted in terms of activation entropy and domain-wall dynamics
Theory of Electron Spin Relaxation in ZnO
Doped ZnO is a promising material for spintronics applications. For such
applications, it is important to understand the spin dynamics and particularly
the spin coherence of this II-VI semiconductor. The spin lifetime
has been measured by optical orientation experiments, and it shows a surprising
non-monotonic behavior with temperature. We explain this behavior by invoking
spin exchange between localized and extended states. Interestingly, the effects
of spin-orbit coupling are by no means negligible, in spite of the relatively
small valence band splitting. This is due to the wurtzite crystal structure of
ZnO. Detailed analysis allows us to characterize the impurity binding energies
and densities, showing that optical orientation experiments can be used as a
characterization tool for semiconductor samples.Comment: 7 pages, 1 figure: minor changes Accepted by Phys. Rev.
Point force manipulation and activated dynamics of polymers adsorbed on structured substrates
We study the activated motion of adsorbed polymers which are driven over a
structured substrate by a localized point force.Our theory applies to
experiments with single polymers using, for example, tips of scanning force
microscopes to drag the polymer.We consider both flexible and semiflexible
polymers,and the lateral surface structure is represented by double-well or
periodic potentials. The dynamics is governed by kink-like excitations for
which we calculate shapes, energies, and critical point forces. Thermally
activated motion proceeds by the nucleation of a kink-antikink pair at the
point where the force is applied and subsequent diffusive separation of kink
and antikink. In the stationary state of the driven polymer, the collective
kink dynamics can be described by an one-dimensional symmetric simple exclusion
process.Comment: 7 pages, 2 Figure
Ascending pharyngeal artery collateral circulation simulating internal carotid artery hypoplasia
Complete occlusion of the cervical segment of the internal carotid artery may result in a collateral circuit between an enlarged ascending pharyngeal artery and the intracranial segment of the internal carotid artery. This anastomosis may simulate a severely stenotic or hypoplastic internal carotid artery. Differentiation between these entities is particularly important if carotid endarterectomy for relief of stenosis is contemplated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46658/1/234_2004_Article_BF00327693.pd
Std fimbriae-fucose interaction increases Salmonella-induced intestinal inflammation and prolongs colonization
Author summary The intestinal epithelium is a crucial biological interface, interacting with both commensal and pathogenic microorganisms. It’s lined with heavily glycosylated proteins and glycolipids which can act as both attachment sites and energy sources for intestinal bacteria. Fut2, the enzyme governing epithelial α1,2-fucosylation, has been implicated in the interaction between microbes and intestinal epithelial cells. Salmonella is one of the most important bacterial gastrointestinal pathogens affecting millions of people worldwide. Salmonella possesses fimbrial and non-fimbrial adhesins which can be used to adhere to host cells. Here we show that Salmonella expresses Std fimbriae in the gastrointestinal tract in vivo and exploit Std fimbriae to bind fucosylated structures in the mucus and on the intestinal epithelium. Furthermore, we demonstrate that the Std fimbriae-fucose interaction is necessary for bacterial colonization of the intestine and for triggering intestinal inflammation. These data lend new insights into bacterial adhesion-epithelial interactions which are essential for bacterial pathogenesis and key factors in determining tissue tropism and host susceptibility to infectious disease
Inducing or suppressing the anisotropy in multilayers based on CoFeB
Controlling the uniaxial magnetic anisotropy is of practical interest to a
wide variety of applications. We study CoFeB single films
grown on various crystalline orientations of LiNbO substrates and on
oxidized silicon. We identify the annealing conditions that are appropriate to
induce or suppress uniaxial anisotropy. Anisotropy fields can be increased by
annealing up to 11 mT when using substrates with anisotropic surfaces. They can
be decreased to below 1 mT when using isotropic surfaces. In the first case,
the observed increase of the anisotropy originates from the biaxial strain in
the film caused by the anisotropic thermal contraction of the substrate when
back at room temperature after strain relaxation during annealing. In the
second case, anisotropy is progressively removed by applying successive
orthogonal fields that are assumed to progressively suppress any chemical
ordering within the magnetic film. The method can be applied to CoFeB/Ru/CoFeB
synthetic antiferromagnets but the tuning of the anisotropy comes with a
decrease of the interlayer exchange coupling and a drastic change of the
exchange stiffness
Shear Modulus of an Elastic Solid under External Pressure as a function of Temperature: The case of Helium
The energy of a dislocation loop in a continuum elastic solid under pressure
is considered within the framework of classical mechanics. For a circular loop,
this is a function with a maximum at pressures that are well within reach of
experimental conditions for solid helium suggesting, in this case, that
dislocation loops can be generated by a pressure-assisted thermally activated
process. It is also pointed out that pinned dislocations segments can alter the
shear response of solid helium, by an amount consistent with current
measurements, without any unpinning.Comment: 5 pages, 3 figure
Relation between composition and vacant oxygen sites in the mixed ionicelectronic conductors La5.4W1 yMyO12 delta M Mo, Re; 0 lt; y lt; 0.2 and their mother compound La6 xWO12 delta 0.4 lt; x lt; 0.8
A detailed analysis of specimen composition, water uptake and their interrelationship in the systems La6 xWO12 amp; 948; 0.4 amp; 8804; x amp; 8804;0.8 and La6 xW1 yMyO12 amp; 948; 0 amp; 8804;y amp; 8804;0.2; M Mo, Re is presented. The three specimen series were investigated in dry and wet D2O conditions. A systematic trend in mass loss and onset temperature variation was observed in La6 xWO12 amp; 948; 0.4 amp; 8804;x amp; 8804;0.8 . Even very small amounts lt; 1 wt of secondary phases were found to notably modify the specimen s water uptake and onset temperature of mass loss. The theoretical model for vacancy concentration available was used to calculate the vacant oxygen sites starting from mass loss values determined by thermogravimetry. A discrepancy between the calculated and observed concentration of vacant oxygen sites is observed for all three systems. The effect of substitution of W by Re or Mo on the vacancy amount is explained taking into account diffraction measurements and information on the oxidation state of the substituting elements Mo and R
Localized induction equation and pseudospherical surfaces
We describe a close connection between the localized induction equation
hierarchy of integrable evolution equations on space curves, and surfaces of
constant negative Gauss curvature.Comment: 21 pages, AMSTeX file. To appear in Journal of Physics A:
Mathematical and Genera
Generalized stacking fault energetics and dislocation properties: compact vs. spread unit dislocation structures in TiAl and CuAu
We present a general scheme for analyzing the structure and mobility of
dislocations based on solutions of the Peierls-Nabarro model with a two
component displacement field and restoring forces determined from the ab-initio
generalized stacking fault energetics (ie., the so-called -surface).
The approach is used to investigate dislocations in L1 TiAl and CuAu;
predicted differences in the unit dislocation properties are explicitly related
with features of the -surface geometry. A unified description of
compact, spread and split dislocation cores is provided with an important
characteristic "dissociation path" revealed by this highly tractable scheme.Comment: 7 two columns pages, 2 eps figures. Phys. Rev. B. accepted November
199
- …