712 research outputs found

    SVC: structured visualization of evolutionary sequence conservation

    Get PDF
    We have developed a web application for the detailed analysis and visualization of evolutionary sequence conservation in complex vertebrate genes. Given a pair of orthologous genes, the protein-coding sequences are aligned. When these sequences are mapped back onto their encoding exons in the genomes, a scaffold of the conserved gene structure naturally emerges. Sequence similarity between exons and introns is analysed and embedded into the gene structure scaffold. The visualization on the SVC server provides detailed information about evolutionarily conserved features of these genes. It further allows concise representation of complex splice patterns in the context of evolutionary conservation. A particular application of our tool arises from the fact that around mRNA editing sites both exonic and intronic sequences are highly conserved. This aids in delineation of these sites. SVC is available at

    SVC: structured visualization of evolutionary sequence conservation

    Get PDF
    We have developed a web application for the detailed analysis and visualization of evolutionary sequence conservation in complex vertebrate genes. Given a pair of orthologous genes, the protein-coding sequences are aligned. When these sequences are mapped back onto their encoding exons in the genomes, a scaffold of the conserved gene structure naturally emerges. Sequence similarity between exons and introns is analysed and embedded into the gene structure scaffold. The visualization on the SVC server provides detailed information about evolutionarily conserved features of these genes. It further allows concise representation of complex splice patterns in the context of evolutionary conservation. A particular application of our tool arises from the fact that around mRNA editing sites both exonic and intronic sequences are highly conserved. This aids in delineation of these sites. SVC is available at

    Actin/alpha-actinin-dependent transport of AMPA receptors in dendritic spines: role of the PDZ-LIM protein RIL

    Get PDF
    The efficacy of excitatory transmission in the brain depends to a large extent on synaptic AMPA receptors, hence the importance of understanding the delivery and recycling of the receptors at the synaptic sites. Here we report a novel regulation of the AMPA receptor transport by a PDZ (postsynaptic density-95/Drosophila disc large tumor suppressor zona occludens 1) and LIM (Lin11/rat Isl-1/Mec3) domain-containing protein, RIL (reversion-induced LIM protein). We show that RIL binds to the AMPA glutamate receptor subunit GluR-A C-terminal peptide via its LIM domain and to alpha-actinin via its PDZ domain. RIL is enriched in the postsynaptic density fraction isolated from rat forebrain, strongly localizes to dendritic spines in cultured neurons, and coprecipitates, together with alpha-actinin, in a protein complex isolated by immunoprecipitation of AMPA receptors from forebrain synaptosomes. Functionally, in heterologous cells, RIL links AMPA receptors to the alpha-actinin/actin cytoskeleton, an effect that appears to apply selectively to the endosomal surface-internalized population of the receptors. In cultured neurons, an overexpression of recombinant RIL increases the accumulation of AMPA receptors in dendritic spines, both at the total level, as assessed by immunodetection of endogenous GluR-A-containing receptors, and at the synaptic surface, as assessed by recording of miniature EPSCs. Our results thus indicate that RIL directs the transport of GluR-A-containing AMPA receptors to and/or within dendritic spines, in an alpha-actinin/actin-dependent manner, and that such trafficking function promotes the synaptic accumulation of the receptors

    GnRH-associated peptide (GAP) is cosecreted with GnRH into the hypophyseal portal blood of ovariectomized sheep

    Full text link
    The secretion of gonadotropin-releasing hormone (GnRH) and GnRH-associated peptide (GAP) into sheep hypothalamo-hypophyseal portal blood was investigated in ovariectomized ewes. GAP and GnRH were cosecreted into portal blood as determined in pooled `peak' and `trough' samples. The temporal pattern of GAP secretion into portal blood was coincidental with that of luteinizing hormone (LH) secretion into peripheral blood in three individual animals. The data provide the first evidence that GAP is a secretory product from mammalian hypothalamus and establish the temporal coexistence of the two peptides which appears to be of physiological significance in the regulation of pituitary function.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26772/1/0000324.pd

    Regulation of Synaptic Structure and Function by FMRP-Associated MicroRNAs miR-125b and miR-132

    Get PDF
    MicroRNAs (miRNAs) are noncoding RNAs that suppress translation of specific mRNAs. The miRNA machinery interacts with fragile X mental retardation protein (FMRP), which functions as translational repressor. We show that miR-125b and miR-132, as well as several other miRNAs, are associated with FMRP in mouse brain. miR-125b and miR-132 had largely opposing effects on dendritic spine morphology and synaptic physiology in hippocampal neurons. FMRP knockdown ameliorates the effect of miRNA overexpression on spine morphology. We identified NMDA receptor subunit NR2A as a target of miR-125b and show that NR2A mRNA is specifically associated with FMRP in brain. In hippocampal neurons, NR2A expression is negatively regulated through its 3′ UTR by FMRP, miR-125b, and Argonaute 1. Regulation of NR2A 3′UTR by FMRP depends in part on miR-125b. Because NMDA receptor subunit composition profoundly affects synaptic plasticity, these observations have implications for the pathophysiology of fragile X syndrome, in which plasticity is altered.Deutsche Forschungsgemeinschaft (ED157/1, postdoctoral fellowship)National Cancer Institute (U.S.) (NCI PO1-CA42063)National Cancer Institute (U.S.) (NCI P30-CA14051)National Cancer Institute (U.S.) (Cancer Center Support (Core) Grant)National Cancer Institute (U.S.) (NCI K99-CA131474)Howard Hughes Medical Institute (Investigator

    Quantitative assessment on the cloning efficiencies of lentiviral transfer vectors with a unique clone site

    Get PDF
    Lentiviral vectors (LVs) are powerful tools for transgene expression in vivo and in vitro. However, the construction of LVs is of low efficiency, due to the large sizes and lack of proper clone sites. Therefore, it is critical to develop efficient strategies for cloning LVs. Here, we reported a combinatorial strategy to efficiently construct LVs using EGFP, hPlk2 wild type (WT) and mutant genes as inserts. Firstly, site-directed mutagenesis (SDM) was performed to create BamH I site for the inserts; secondly, pWPI LV was dephosphorylated after BamH I digestion; finally, the amounts and ratios of the insert and vector DNA were optimized to increase monomeric ligation. Our results showed that the total percentage of positive clones was approximately 48%±7.6%. Using this method, almost all the vectors could be constructed through two or three minipreps. Therefore, our study provided an efficient method for constructing large-size vectors

    Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway

    Get PDF
    Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation.Norman B. Leventhal FellowshipUnited States. National Institutes of Health (NIH T32 MH074249)United States. National Institutes of Health (NIH RO1 NS051874

    Genome-Wide Identification of Transcription Start Sites, Promoters and Transcription Factor Binding Sites in E. coli

    Get PDF
    Despite almost 40 years of molecular genetics research in Escherichia coli a major fraction of its Transcription Start Sites (TSSs) are still unknown, limiting therefore our understanding of the regulatory circuits that control gene expression in this model organism. RegulonDB (http://regulondb.ccg.unam.mx/) is aimed at integrating the genetic regulatory network of E. coli K12 as an entirely bioinformatic project up till now. In this work, we extended its aims by generating experimental data at a genome scale on TSSs, promoters and regulatory regions. We implemented a modified 5′ RACE protocol and an unbiased High Throughput Pyrosequencing Strategy (HTPS) that allowed us to map more than 1700 TSSs with high precision. From this collection, about 230 corresponded to previously reported TSSs, which helped us to benchmark both our methodologies and the accuracy of the previous mapping experiments. The other ca 1500 TSSs mapped belong to about 1000 different genes, many of them with no assigned function. We identified promoter sequences and type of σ factors that control the expression of about 80% of these genes. As expected, the housekeeping σ70 was the most common type of promoter, followed by σ38. The majority of the putative TSSs were located between 20 to 40 nucleotides from the translational start site. Putative regulatory binding sites for transcription factors were detected upstream of many TSSs. For a few transcripts, riboswitches and small RNAs were found. Several genes also had additional TSSs within the coding region. Unexpectedly, the HTPS experiments revealed extensive antisense transcription, probably for regulatory functions. The new information in RegulonDB, now with more than 2400 experimentally determined TSSs, strengthens the accuracy of promoter prediction, operon structure, and regulatory networks and provides valuable new information that will facilitate the understanding from a global perspective the complex and intricate regulatory network that operates in E. coli

    Organic pollutants in sea-surface microlayer and aerosol in thecoastal environment of Leghorn—(Tyrrhenian Sea)

    Get PDF
    The levels of dissolved and particle-associated n-alkanes, alkylbenzenes, phthalates, PAHs, anionic surfactants and surfactant fluorescent organic matter ŽSFOM. were measured in sea-surface microlayer ŽSML. and sub-surface water ŽSSL. samples collected in the Leghorn marine environment in September and October 1999. Nine stations, located in the Leghorn harbour and at increasing distances from the Port, were sampled three times on the same day. At all the stations, SML concentrations of the selected organic compounds were significantly higher than SSL values and the enrichment factors ŽEFsSML concentrationrSSL concentration. were greater in the particulate phase than in the dissolved phase. SML concentrations varied greatly among the sampling sites, the highest levels Žn-alkanes 3674 mgrl, phthalates 177 mgrl, total PAHs 226 mgrl. being found in the particulate phase in the Leghorn harbour. To improve the knowledge on pollutant exchanges between sea-surface waters and atmosphere, the validity of spray drop adsorption model ŽSDAM. was verified for SFOM, surface-active agents, such as phthalates, and compounds which can interact with SFOM, such as n-alkanes and PAHs. q2001 Elsevier Science B.V. All rights reserved
    • …
    corecore