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SUMMARY

MicroRNAs (miRNAs) are noncoding RNAs that
suppress translation of specific mRNAs. The miRNA
machinery interacts with fragile X mental retardation
protein (FMRP), which functions as translational
repressor. We show that miR-125b and miR-132, as
well as several other miRNAs, are associated with
FMRP in mouse brain. miR-125b and miR-132 had
largely opposing effects on dendritic spine mor-
phology and synaptic physiology in hippocampal
neurons. FMRP knockdown ameliorates the effect
of miRNA overexpression on spine morphology. We
identified NMDA receptor subunit NR2A as a target
of miR-125b and show that NR2A mRNA is specifi-
cally associated with FMRP in brain. In hippocampal
neurons, NR2A expression is negatively regulated
through its 30 UTR by FMRP, miR-125b, and Argo-
naute 1. Regulation of NR2A 30UTR by FMRP
depends in part on miR-125b. Because NMDA
receptor subunit composition profoundly affects
synaptic plasticity, these observations have implica-
tions for the pathophysiology of fragile X syndrome,
in which plasticity is altered.

INTRODUCTION

MicroRNAs (miRNAs) are short (�22 nucleotide) noncoding

RNAs that mediate posttranscriptional gene silencing (Filipowicz

et al., 2008; Rana, 2007). miRNAs are loaded into effector

proteins of the Argonaute family. Once loaded the Argonaute

protein is said to be ‘‘programmed’’ with the miRNA, which

guides the Argonaute protein to specific mRNA targets. miRNAs

usually bind their target mRNAs through imperfect base pairing

in the 30 untranslated region (UTR) and impact protein expression

by inhibiting mRNA translation or by promoting mRNA decay.

In mammals, several hundred distinct miRNAs have been

discovered, including those selectively expressed in the brain

(Cao et al., 2006). miRNAs play roles in early development
(Stefani and Slack, 2008) and in diseases such as cancer

(Esquela-Kerscher and Slack, 2006) and neurodegeneration

(Eacker et al., 2009), yet only a small number of miRNA targets

have been validated and shown to be functionally important

in vivo (Schratt, 2009). In mammals, miR-132 regulates dendrite

development by targeting p250GAP (Vo et al., 2005; Wayman

et al., 2008) and miR-134 and 138 have been implicated in

dendritic spine development through repression of LIMK1 and

APT1 (Schratt et al., 2006; Siegel et al., 2009).

Fragile X syndrome (FXS), the most common inherited cause

of mental retardation (Bagni and Greenough, 2005; Bassell and

Warren, 2008), is usually due to a trinucleotide expansion in

the FMR1 gene that results in transcriptional silencing of FMRP

(fragile X mental retardation protein) expression. FMRP contains

multiple RNA-binding domains and is widely thought to function

as a translational suppressor of specific mRNAs, including

MAP1b, CaMKIIa, and Arc (Bassell and Warren, 2008).

FMRP is biochemically and genetically linked to the miRNA

pathway. FMRP interacts with proteins (e.g., Argonaute and

Dicer) in the RNA interference silencing complex (RISC) and

with miRNAs, but FMRP itself is not essential for RNAi-mediated

mRNA cleavage (Bolduc et al., 2008; Caudy et al., 2002; Cheever

and Ceman, 2009; Hock et al., 2007; Ishizuka et al., 2002; Jin

et al., 2004b; Okamura et al., 2004; Plante et al., 2006). Hetero-

zygous loss of AGO1 enhances the phenotype of heterozygous

loss of FMRP in flies, suggesting AGO1 facilitates translational

repression by FMRP (Bolduc et al., 2008; Jin et al., 2004b).

One hypothesis is that specific miRNAs—as part of the FMRP

translation regulatory complex—could facilitate selection and/

or suppression of target mRNAs by FMRP (Jin et al., 2004a).

However, no specific example of such a functional association

of FMRP, mRNA, and miRNA has been identified.

Although �22 nucleotide RNA has been detected in the

FMRP-complex (Caudy et al., 2002; Ishizuka et al., 2002; Jin

et al., 2004b), it is unknown which specific miRNAs associate

with FMRP in mammals. We hypothesized that such FMRP-

associated miRNAs might regulate synaptic function and

dendritic spine structure, given the well-established synaptic

abnormalities found in FMR1 knockout (KO) mice that are also

central to the pathogenesis of FXS in humans (Comery et al.,

1997; Irwin et al., 2001). Here we report that two FMRP-associ-

ated miRNAs (miR-125b and miR-132) can affect dendritic spine
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Figure 1. Identification of miRNAs Associated with FMRP in Brain

(A) FMRP immunoprecipitates from individual wild-type and FMR1 KO mouse

brain (age 3 months) were immunoblotted with anti-FMRP antibody.

(B) miRNA recovery from FMRP-immunoprecipitation of wild-type mice

normalized to FMR1 KO mice. For both groups individual immunoprecipita-

tions derived from six single mice were analyzed by TaqMan qPCR. Statistical

analysis by Student’s t test: *p < 0.05, **p < 0.01, ***p < 0.001. Error bars

denote standard error of the mean (SEM).
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morphology. For both miRNAs, we identified specific mRNA

targets that are also associated with FMRP and encode key

proteins involved in synaptic function.
RESULTS

FMRP-Associated miRNAs in Mouse Brain
To identify FMRP-associated miRNAs, we purified FMRP from

mouse brain using FMRP antibodies and isolated the associated

miRNAs following a protocol commonly used for the identifica-

tion of mRNA targets of FMRP (Brown et al., 2001). As a control

for specificity of miRNA association, we also used FMRP anti-

bodies to immunoprecipitate from FMR1 KO brains (Figure 1A).

We performed quantitative polymerase chain reaction (qPCR)

to measure the amount of mature miRNAs coimmunoprecipi-

tated with anti-FMRP antibodies. A specific set of miRNAs

was quantified: the brain-specific miRNAs 9, 124, 128; miRNAs

132 and 219, which are inducible by CREB, an important

transcription factor implicated in learning and memory; and

two miRNAs previously reported to regulate spine morphology,

miRNAs 134 and 138 (Cao et al., 2006; Schratt et al., 2006; Siegel

et al., 2009; Vo et al., 2005). Additionally, we looked for broadly

expressed miRNAs of high (miRNAs 26a, 29a, 125b, 127, and

let-7c), intermediate (miRNAs 22, and 125a), and low abundance

(miRNAs 27b, 100, and 143) (Landgraf et al., 2007; Pena et al.,

2009). Twelve of these candidate miRNAs were found to asso-

ciate with FMRP (Figure 1B). That is, let-7c, miR-9, 100, 124,
374 Neuron 65, 373–384, February 11, 2010 ª2010 Elsevier Inc.
125a, 125b, 127, 128, 132, 138, 143, and 219 were enriched

3- to 7-fold in FMRP immunoprecipitates from age-matched

wild-type brains as compared with control immunoprecipitates

from FMR1 KO brains. Expression levels for all tested miRNAs

were indistinguishable between brains from wild-type and

FMR1 KO mice (data not shown). In addition, a small nucleolar

RNA (snoRNA-135) and five other miRNAs (miR-22, 26a, 27b,

29a, and 134) did not show significant coprecipitation with

FMRP above the background seen in FMR1 KO brain, indicating

that there is selectivity of miRNA association with FMRP

(Figure 1B).

Effects of FMRP-Associated miRNAs
on Spine Morphology
We asked whether specific miRNAs associated with FMRP

might be involved in the regulation of spine morphogenesis. To

determine the gain-of-function phenotype of the miRNAs, we

transfected dissociated rat hippocampal neurons in culture

with DNA plasmids that express the precursor-miRNA hairpin

under the control of a b-actin promoter (Zeng et al., 2005). Over-

expression of the mature miRNA in neurons was validated using

EGFP-based miRNA-sensors containing artificial miRNA target

sites in their 30UTR (see Figure S1A available online).

Hippocampal neurons were transfected at 14 days in vitro

(DIV14) with individual miRNAs and EGFP marker for 3 days

(DIV14+3). Dendritic protrusions were differentially affected by

miR-125b and miR-132. Overexpression of miR-125b resulted

in longer and thinner protrusions (Figures 2A–2C). In neurons

overexpressing miR-125b, �20% of dendritic protrusions were

very long (>3 mm), versus �5%–10% in untransfected neurons

or in neurons transfected with other miRNAs (Figure 2E). This

difference was even more marked for protrusions > 5 mm. Protru-

sion density was not affected. miR-125b, let-7c, miR-22,

miR-124, miR-132, and miR-143 did not have a statistically

significant effect on dendritic growth or arborization as

measured by Sholl analysis (Figures 2A and S2).

In contrast, neurons overexpressing miR-132 were character-

ized by stubby and mushroom spines (Figure 2A). Overex-

pressed miR-132 caused an increase in average protrusion

width, without affecting the average length (Figures 2B and

2C). In addition, average protrusion density fell significantly by

�15% (Figure 2D). The effects of miRNAs 125b and 132 on

dendritic spine width appear to be specific, because overex-

pression of let-7c, miR-22, miR-124, miR-9, and miR-128

(Figure 2 and data not shown) had no significant effect on spine

number or shape compared with vector control. Although

miR-132 has been implicated in regulating neuron morphology

(Siegel et al., 2009; Vo et al., 2005; Wayman et al., 2008), here

we show a role for miR-125b in spine morphogenesis.

FMRP Is Required for the Effect of miR-125b
and miR-132 on Spine Morphology
To test whether regulation of spine morphology by miR-125b

and 132 is dependent on FMRP, we overexpressed the miRNA

constructs in neurons either with FMRP-shRNA or control lucif-

erase shRNA constructs (Zhang and Macara, 2006). In our

experiments, FMRP knockdown (DIV14+3) by itself did not

affect spine morphology (Figure 3). The lack of effect of FMRP
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Figure 2. Overexpression of FMRP-Associated miRNAs Differentially Affects Dendritic Spine Morphology
(A) Hippocampal neurons at DIV14 were cotransfected with plasmids expressing specific miRNAs (see Figure S1A) and EGFP to outline neuron morphology.

Three days posttransfection (DIV14+3) neurons were fixed, immunostained for EGFP, and imaged by confocal microscopy to visualize dendritic arborization

and spine morphology. Low-magnification images show transfected whole neurons, and higher-magnification images show representative dendritic segments

of these cells. Scale bars represent 10 mm (upper and lower panels).

(B–D) The length (B), width (C), and density (D) of dendritic protrusions were manually measured using MetaMorph software. Data were normalized to neurons

transfected with empty vector (vec). Statistical analysis by one-way analysis of variance (ANOVA) with Dunnett’s post test: *p < 0.05, **p < 0.01; n = 26–72 neurons

for each group. Error bars denote SEM.

(E) Percentage of protrusions with length >3 mm or length >5 mm. See also Figure S2.
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suppression might be explained by the acute manipulation

(compared with FMR1 KO mice) and by the fact that the effect

of FMRP on spine morphology declines in neurons of this age

(Nimchinsky et al., 2001). We validated FMRP-knockdown and

specificity of two shRNA constructs (#1 and #2) in HEK293 cells

and cultured hippocampal neurons (Figure S3). ShRNA FMRP #1

(and to a lesser extent #2) reduced expression of cotransfected

EGFP-FMRP (Antar et al., 2004) and endogenous FMRP immu-

nofluorescence.

Control Luc shRNA expression did not affect the differential

spine phenotypes induced by miR-125 or 132 overexpression

(Figures 2 and 3). Compared with miR-143, a miRNA that does

not affect dendritic spines (Figure 2), miR-125b-overexpressing

neurons had significantly longer and thinner dendritic protru-

sions, whereas miR-132 expression increased protrusion width

and reduced spine density. In cells with knockdown of FMRP,

however, the effects of miR-125 and 132 were abolished and

spine morphology was not significantly different from miR-143

control. These data indicate that FMRP is required for miR-125b

and 132 to alter spine morphology. Because FMRP is not needed

for general RNAi function (Caudy et al., 2002; Hock et al., 2007),
these findings support the idea that the FMRP-associated

miRNAs 125b and 132 modulate dendritic spine morphology

together with FMRP through common mRNA targets.

Sequestration of FMRP-Associated miRNA Affects
Neuron Morphology
To investigate the loss-of-function phenotype of individual

miRNAs on spine morphology, we applied the plasmid-based

‘‘sponge’’ method of Ebert et al. (2007). Overexpression of

mRNA constructs containing multiple (five to seven) concate-

nated miRNA binding sites with central mismatches (that prevent

AGO2-mediated mRNA cleavage) results in the sequestration of

endogenous miRNAs that bind to these sequences (Figure S1B).

Because the eight 50-most nucleotides of a miRNA, the so-called

‘‘seed’’ region, is thought to be critical for target sequence

recognition, this approach leads to cross-capture of related

miRNA isoforms with identical seed regions (e.g., let-7a through

let-7i, or miR-125a and 125b). In these cases, the sponge

constructs are denoted according to the miRNA family seques-

tered (e.g., let-7 and miR-125 sponge). Specificity and efficacy

of miRNA suppression was confirmed for each sponge in
Neuron 65, 373–384, February 11, 2010 ª2010 Elsevier Inc. 375
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Figure 3. Overexpression of FMRP-Associated miRNAs Differentially Affects Dendritic Spine Morphology

(A) Hippocampal neurons were cotransfected (DIV14+3) with EGFP, miRNAs, and shRNAs (compare Figure S3). Scale bars represent 10 mm (upper and lower

panels).

(B–D) The length (B), width (C), and density (D) of dendritic protrusions were manually quantified. Data were normalized to neurons co-transfected with

miR-143 and Luc shRNA. Statistical analysis by one-way ANOVA with Bonferroni’s post test: *p < 0.05, **p < 0.01; n = 25–35 neurons for each group.

Error bars denote SEM.
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hippocampal neurons, indicating sufficient sequestration and

functional suppression of targeted endogenous miRNAs. For

example, transfection of a sponge construct for miR-124, the

most abundant miRNA in brain, upregulated expression of

a sensor containing target sequences for miR-124 by �5-fold,

but had no effect on other sensors containing unrelated miRNA

target sites (Figure S1C).

The effects of individual miRNA sponges on neuron

morphology were examined in hippocampal neurons 3 days

after transfection (DIV14+3) (Figure 4). Loss-of-function of the

abundant neuronal miRNAs let-7 and miR-124, and of the less

abundant miR-125 and miR-132 (Landgraf et al., 2007), caused

a marked pruning of the dendritic arbor, as quantified by Sholl

analysis (Figures 4A and 4E). Primary dendrites ramified less

and the dendritic arbor covered a smaller area. By contrast,

sponges targeting miR-22 and miR-143 had little effect on

dendrite complexity (Figures 4A and 4E).

Conversely to miR-125b gain-of-function, which reduced

spine width (Figure 2C), miR-125 loss-of-function significantly

increased protrusion width (Figure 4C). Moreover, neurons

transfected with sponges for let-7, miR-22 and miR-124 also

showed a modest but significant increase in protrusion width.

Only the let-7 sponge significantly increased protrusion length

(Figure 4B) and none of the sponge constructs tested affected

the density of protrusions (Figure 4D). The lack of effect of

sponging of miR-132 and miR-143 could be explained by an

activity-dependent role for miR-132 and low basal expression

of miR-132 and miR-143 (Landgraf et al., 2007). Because over-

expression and sponging of miR-125b had opposite effects on
376 Neuron 65, 373–384, February 11, 2010 ª2010 Elsevier Inc.
protrusion width, these data corroborate the idea that miR-125b

is important for regulating spine morphology.

miR-125b and miR-132 Differentially Modify Synaptic
Strength
Spine size often correlates with synaptic strength. We therefore

measured AMPA receptor-mediated miniature excitatory post-

synaptic currents (mEPSCs) in cultured hippocampal neurons

transfected with miR-125b and miR-132 constructs (Figure 5).

Overexpression of miR-125b resulted in a significant 25% drop

in mean mEPSC amplitude (Figures 5A and 5C). The weakening

of synaptic transmission is consistent with the long thin protru-

sions and the reduced spine width induced by miR-125b

(Figure 2C). In neurons overexpressing miR-125b, mEPSC

frequency fell relative to control neurons transfected with empty

vector, but this did not reach the level of statistical significance

(Figure 5C). Suppressing endogenous miR-125b activity with

the miR-125 sponge had no significant effect on mEPSC ampli-

tude or frequency (Figures 5A and 5C), consistent with the modest

effect of miR-125b sponging on spine morphology (Figure 4).

In contrast to miR-125b, overexpression of miR-132 led to an

increase in mean mEPSC amplitude (Figures 5B and 5D), consis-

tent with the wider spines induced by miR-132 (Figure 2C).

Miniature EPSC frequency was also considerably elevated by

miR-132 overexpression (Figure 5D), even though spine density

was decreased by this miRNA (Figures 2D and 3D). This could

reflect a greater number of miniature events detected with the

increased amplitude of mEPSC. The miR-132 sponge did not

affect either amplitude or frequency of mEPSCs. Overall, these
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Figure 4. Sponging of FMRP-Associated miRNAs Differentially Affects Dendritic Spine Morphology

(A) Hippocampal neurons were cotransfected (DIV14+3) with EGFP and sponges for specific miRNAs (see Figures S1B, S1C) to sequester endogenous miRNAs.

Scale bars represent 10 mm (upper and lower panels).

(B–D) The length (B), width (C), and density (D) of dendritic protrusions was manually quantified. Data were normalized to neurons expressing empty vector (vec).

n = 23–50 cells for each group. Statistical analysis by one-way ANOVA with Dunnett’s post test: *p < 0.05, **p < 0.01. Error bars denote SEM.

(E) Sholl analysis of sponge-transfected neurons, measuring the number of dendrites crossing concentric circles at the indicated distance around the cell body.

Gray corridor represents neurons transfected with empty vector (mean ± SEM). n = 40–71 neurons for each group. Sponge-transfected cells are significantly

different from control neurons (two-way ANOVA, p < 0.05) for miR-124 and let-7 (from 37.5 mm radius), miR-125 and miR-132 (from 63.5 mm), and miR-22

and miR-143 (from 75 mm). Error bars denote SEM.
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electrophysiological findings are consistent with and corrobo-

rate the effects of miR-125b and miR-132 on the structure of

dendritic spines.

mRNAs Encoding for Synaptic Proteins Are Targeted
by FMRP-Associated miRNAs
We asked which target genes might mediate the bidirectional

effects of miR-125b and miR-132 on synaptic physiology.

shRNA-mediated knockdown of the known miR-132 target

p250GAP was recently found to increase dendritic spine size

(Nakazawa et al., 2008; Vo et al., 2005; Wayman et al., 2008).

This is in accord with the spine enlargement upon miR-132

expression in our experiments (Figure 2).

We focused on miR-125b target mRNAs predicted by Tar-

getScan (Lewis et al., 2005) that might contribute to the induction

of long thin protrusions and altered synaptic function. Target

prediction mainly relies on the presence of a seed match to a

miRNA in the 30UTR of an mRNA that is conserved between

species. For example, the 30UTR of the NR2A subunit of

NMDA receptors contains such a conserved sequence comple-

mentary to the seed region of miR-125b (Figure 6A).
To validate candidate miRNA targets, we fused the 30UTRs of

the specific mRNAs to the coding sequence of firefly luciferase

(FF-luc). The FF-luc reporter construct was then cotransfected

with plasmids expressing individual miRNAs in HEK293 cells,

along with a plasmid encoding Renilla reniformis luciferase

(RR-luc) for normalization. miRNA expression was validated

using FF-luc reporters containing perfect-match miRNA target-

sites (Figure S4).

Most of the tested FF-luc 30UTR reporters of predicted target

genes were unaffected by miRNA coexpression (Figure S5). We

found slight suppression of GluR2 (by miR-124a) and Eph

receptor A4 (EphA4, by let-7c, miR-22 and possibly miR-125b).

Only the NR2A 30UTR reporter was strongly inhibited by coex-

pression of miR-125b (�45%), consistent with the conserved

seed match (Figures 6A and 6B). By contrast, coexpression of

let-7c, miR-22 and miR-124 had no effect on NR2A reporter

expression, and no seed matches to these miRNAs exist in the

NR2A 30UTR. FF-luc reporter constructs containing the 30UTR

of the other NMDA receptor subunits NR1 and NR2B (containing

no such seed region) were not affected by the tested miRNAs

(Figure 6B).
Neuron 65, 373–384, February 11, 2010 ª2010 Elsevier Inc. 377
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Figure 5. miR-125b and miR-132 Modify Synaptic

Strength

AMPA-mediated miniature excitatory postsynaptic

currents (mEPSCs) measured in cultured hippocampal

neurons cotransfected (DIV14+3) with EGFP and miR-

125b (A and C) or miR-132 (B and D) overexpression or

sponge constructs.

(A and B) Representative mEPSC traces from transfected

neurons.

(C and D) Mean mEPSC amplitude and frequency normal-

ized to control neurons transfected with empty vector.

Statistical analysis using Kruskal-Wallis test and Dunn’s

post test: **p < 0.01, ***p < 0.001; n = 16–22 neurons for

each group. Error bars denote SEM.
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To corroborate the regulation of NR2A by miR-125b in a loss-

of-function experiment in neurons, we coexpressed FF-luc

reporter constructs together with miRNA sponges in hippo-

campal neurons. The NR2A 30UTR FF-luc reporter was strongly

and specifically upregulated (�2.5-fold) by sponging of endog-

enous miR-125 (Figure 6C). Deleting the putative miR-125b

target site in the 30 UTR (NR2A D125) removed more than

80% of the induction of NR2A reporter expression by miR-125

sponge, indicating that this site mediates the majority of the

inhibitory effect of miR-125. A second, noncanonical potential

miR-125b target site was observed in the NR2A 30UTR (UCU-

CAGG), which might account for the minor residual effect of

miR-125 sponging. Reporters containing NR1 or NR2B 30UTR

were unaffected by miR-125 inhibition. Together these data

indicate that neuronal miR-125 can specifically regulate NR2A

reporter expression.

NR2A Is a Target of miR-125 in Neurons
To validate NR2A as a bona fide miR-125b target in neurons, we

transduced hippocampal neurons in culture (DIV4+4) with lentivi-

ral vectors expressing either miRNA precursor hairpins or

concatenated miRNA binding sites (Figure S1B) and analyzed

NMDAR subunit expression by immunoblotting (Figure 7A). We

used miR-143 as a negative control, because it did not affect

spine morphology and NR2A reporter expression (Figures 2–6).

Overexpression of miR-125b reduced NR2A expression by

�60% compared with control neurons infected with miR-143 ex-

pressing virus, but had no significant effect on the expression

levels of NR1 and NR2B, PSD-95 or b3-tubulin. Conversely,

sequestering endogenous miR-125 by sponging specifically

enhanced endogenous NR2A levels by �60% compared with

miR-143 sponging (Figure 7A). These data extend the findings
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using FF-luc reporters (Figure 6) and demon-

strate that miR-125b specifically regulates

endogenous NR2A in neurons.

During postnatal brain development, NR2A

expression rises while NR2B falls (Monyer

et al., 1994; Sheng et al., 1994). In hippocampal

cultures, NR2A mRNA levels increased �4-fold

within the first 14 days in vitro, while NR2B

mRNA tapered to a plateau after an initial peak

(Figure S6A). During this period miR-125b levels

dropped �50% (Figure S6B), which may con-
tribute to the induction of NR2A protein expression at the post-

transcriptional level (Yashiro and Philpot, 2008).

NR2A-containing NMDA receptors (NMDARs) have faster

deactivation kinetics than NR2B-containing NMDA receptors.

Could miR-125b affect the subunit composition of NMDA recep-

tors and result in a functional change in NMDAR channel kinetics?

Evoked NMDAR-EPSC kinetics were measured in pairs of trans-

fected and untransfected neighboring CA1 neurons of organo-

typic hippocampal slice culture transfected with miRNA-express-

ing constructs. miR-125b transfected cells showed prolonged

EPSC half-width relative to untransfected neighboring cells,

consistent with relative loss of synaptic NR2A-containing

NMDARs (Figure 7B). Control miR-143 overexpression had no

significant effect on NMDAR-EPSC kinetics (Figure 7B). In

contrast, sequestering endogenous miR-125b using sponge

transfection accelerated the NMDAR-EPSC kinetics consistent

with increased NR2A expression. Furthermore, cotransfecting

an NR2A construct lacking most of the 30UTR including the miR-

125b target region reversed the effect of miR-125b overexpres-

sion on the NMDAR-EPSC half-width. The overall NMDAR-EPSC

amplitude was not significantly changed in miRNA-overexpress-

ing neurons (data not shown). Together these data indicate that

endogenous miR-125 directly and specifically regulates NR2A

expression and affects NMDA receptor function accordingly.

Regulation of NR2A by FMRP
In the experiments above, we found that miR-125b is associated

with FMRP, and that miR-125b regulates the expression of

NR2A. So is the NR2A transcript an mRNA regulated by

FMRP? To address this question, we performed quantitative

RT-PCR to measure the amount of NR2A mRNA that was coim-

munoprecipitated with FMRP. NR2A mRNA was 2.3-fold more
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Figure 6. NR2A 30UTR Is Regulated by miR-125b

FF-luc 30UTR reporters for NMDA receptor subunits NR1, NR2A or N2B were

cotransfected with miRNA overexpressing or sponging constructs, as well as

RR-luc. Relative expression was determined by normalizing the ratio of FF-luc

and RR-luc activity to the effect of each miRNA on a control FF-luc reporter

(and let-7c).

(A) Alignment of the 30UTR sequence of NR2A in four mammalian species with

miR-125b.

(B) Relative expression of NMDA receptor FF-luc reporters constructs cotrans-

fected with miRNA-expressing constructs in HEK293 cells. n = 18–24.

One-way ANOVA with Dunnett’s post test: *p < 0.05, **p < 0.01. n = 12 to

54. Error bars denote SEM. See Figures S4 and S5.

(C) Relative expression of FF-luc reporters cotransfected with miRNA-

sponges in hippocampal neurons (DIV4+3). NR2A D125 completely lacks the

miRNA-target site shown above. Two-way ANOVA with Bonferroni’s post

test: **p < 0.01, ***p < 0.001. n = 14–56. Error bars denote SEM.
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Figure 7. NR2A Is a miR-125b Target in Neurons

(A) Cultured hippocampal neurons (DIV4+4) were infected with miR-143 (�) or

125b (+) overexpressing or sponging viral vectors. Immunoblots show NMDA

receptor subunits expression. Immunoblot signals were quantified by densi-

tometry and normalized to total protein amounts and miR-143 expressing

controls. Student’s t test: **p < 0.01. ***p < 0.001. n = 6. Error bars denote SEM.

(B) NMDA-receptor EPSC half-width measured in CA1 pyramidal cells in orga-

notypic hippocampal slice culture transfected with miR-143 (ctrl), miR-125b

alone (with empty vector), miR-125b together with NR2A or miR-125b sponge

(DIV11+4). Paired recording of transfected and untransfected neighboring

neurons in the same slice, labeled + and �, respectively. Paired Student’s

t test: *p < 0.05. n = 12 to 14 pairs.
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abundant in anti-FMRP immunoprecipitates from wild-type mice

compared to the background level immunoprecipitated from

FMR1 KO mice, indicating specific association for NR2A

mRNA with FMRP (Figure 8A). NR2A recovery with FMRP immu-

noprecipitation was similar to that measured here for MAP1B

mRNA (2.5-fold), a reported FMRP target mRNA. Interestingly,
NR2B mRNA was also enriched in FMRP immunoprecipitates

from wild-type mouse brains (�4-fold over the background level

from FMR1 KOs), even though NR2B is not a predicted target of

any of the miRNAs we tested in this study. NR2B may be regu-

lated by other miRNAs or associate with FMRP independent of

miRNAs.

In contrast to NR2A and NR2B, the NR1 mRNA was not asso-

ciated with FMRP by the coimmunoprecipitation assay (Fig-

ure 8A), nor was there coprecipitation of GAPDH mRNAs, a

commonly used negative control that is believed not to be regu-

lated by FMRP (Brown et al., 2001). However, we found

p250GAP (which is reported to be regulated by miR-132) to be

significantly associated with FMRP (Figure 8A). p250GAP had

not been implicated in FXS previously.

To rule out artificial association between FMRP and mRNAs

during immunoprecipitation, we utilized a novel comixing assay

that confirms interaction in the intact brain. We homogenized

wild-type rat brain together with �5-fold excess FMR1 KO

mouse brain and determined the species distribution of mRNAs

in FMRP immunoprecipitates using diagnostic restriction anal-

ysis of cloned cDNA fragments (Figures 8B and S7). Thus,

only rat FMRP protein, but both rat and mouse mRNAs are

present during immunoprecipitation. For mRNAs interacting

with FMRP in vivo, mainly rat mRNA should be found in the

immunoprecipitation of FMRP. For GAPDH and NR1, which

were not enriched in FMRP immunoprecipitates (Figure 8A),

the ratio of rat versus mouse cDNA clones was not significantly

different in FMRP immunoprecipitates and input material,
Neuron 65, 373–384, February 11, 2010 ª2010 Elsevier Inc. 379
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Figure 8. miRNA Target Genes Associate with

FMRP in Mouse Brain

(A) Enrichment of specific mRNAs in FMRP immunopre-

cipitates from wild-type mouse brain extracts relative to

those derived from FMR1 KO mice (age 3 months)

measured by RT-qPCR. RNA-samples are identical to

those used in Figure 1. Statistical analysis by Student’s t

test: **p < 0.01, **p < 0.001. n = 6 immunoprecipitations

from individual mice for each group. Error bars denote

SEM.

(B) Enrichment of rat mRNAs in FMRP-immunoprecipi-

tates from wild-type rat brain mixed with FMR1 KO mouse

brain during homogenization indicates in vivo interaction

of FMRP with specific mRNAs (see text). Statistical

analysis using Fisher’s exact test **p < 0.01, ***p < 0.001.

n = 29 to 45. Dashed line indicates the frequency (�17%)

of rat cDNAs in the input material averaged among all

tested genes. See also Figure S7. Error bars denote SEM.

(C and D) Hippocampal neurons (DIV4+3) were cotrans-

fected with FF-luc 30UTR reporters for the indicated

NMDA receptor subunits as well as RR-luc and shRNA

constructs targeting ZnT3, FMRP, AGO1, or EGFP (see

Figure S3). Graphs indicate expression of the reporter

constructs normalized to the effect of each shRNA on a

control FF-luc construct. Statistical analysis: (C) One-

way ANOVA with Dunnett’s post test: *p < 0.05, **p <

0.01. n = 24 to 72. (D) Student’s test comparing the

response of both NR2A reporter variants: *p < 0.05, **p <

0.01, ***p < 0.001. n = 18. See also Figures S6–S8.
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indicating nonspecific contamination with these mRNAs (Fig-

ure 8B). In contrast, for the positive control MAP1B and the puta-

tive FMRP-target genes NR2A, NR2B, and p250GAP, the frac-

tion of rat cDNA clones was much higher in the FMRP

immunoprecipitates than in the mixed rat/mouse brain extract.

Thus, ‘‘species-tagging’’ confirmed that the interaction of

MAP1B, NR2A, NR2B, and p250GAP mRNA with FMRP

occurred prior to homogenization in vivo.

Among the tested genes only NR2B showed a small change in

mRNA level in the FMR1 KO (133 ± 10% compared with 100 ±

5% in the wild-type, p < 0.05), which is in keeping with the belief

that FMRP mainly regulates the translation of its target genes

rather than mRNA abundance. We therefore measured the

protein levels of NMDA receptor subunits in hippocampus of

FMR1 KO mice at 7 and 14 days after birth. Consistent with

previous reports (Giuffrida et al., 2005), we found no significant

difference in NR2A, NR2B, or p250GAP total protein levels

between wild-type and KO (Figure S8).

Inappropriate development or compensatory mechanisms

(e.g., on the level of transcription or degradation) might obscure

dysregulation of NR2A in FMR1 KO mice (Yashiro and Philpot,

2008). Thus we used acute knockdown of FMRP in hippocampal

neurons and FF-luc 30UTR reporters to circumvent these con-

founding factors. Acute knockdown of FMRP using shRNA #1

strongly stimulated the expression of the NR2A 30UTR reporter

(by �2.5-fold) compared with control shRNAs targeting zinc

transporter 3 (ZnT3) or EGFP (Figure 8C). In contrast, FMRP

knockdown did not affect the NR1 reporter and even slightly

reduced NR2B reporter expression. These data suggest that

FMRP has a suppressive action on the 30UTR of NR2A in neurons.

Because Argonaute proteins interacting with FMRP may

contribute to miRNA-dependent translational repression of
380 Neuron 65, 373–384, February 11, 2010 ª2010 Elsevier Inc.
FMRP target genes, we asked whether knockdown of Argonaute

1 (AGO1) also affects the NR2A 30UTR reporter. AGO1, which is

highly expressed in the central nervous system, lacks endonu-

clease activity but supports translational repression of

mismatch-containing miRNA targets (Filipowicz et al., 2008;

Lu et al., 2005). Therefore we took advantage of an shRNA target

sequence with validated specificity for AGO1 (Meister et al.,

2004b). AGO1 knockdown increased expression of the NR2A

30UTR reporter by�70%, but had no effect on the NR2B reporter

(Figure 8C). There was also a slight increase in NR1 30UTR

reporter expression with AGO1 suppression.

To test whether the NR2A 30UTR is regulated by FMRP in a

miR-125b-dependent manner, we compared regulation of

NR2A reporter constructs containing or lacking the miR-125b

target site. Basal translation of the NR2A D125 reporter was

�4-fold higher than wild-type, consistent with derepression

due to loss of miR-125 binding. In fold terms, the NR2A D125

reporter was significantly less induced by FMRP knockdown

than wild-type NR2A (Figure 8D), implying that miR-125 contrib-

utes in part to FMRP-dependent NR2A regulation. We attribute

the differential effect of FMRP knockdown on NR2A wild-type

versus NR2A D125 to a functional interaction between FMRP

and miR-125 on the control of NR2A 30UTR. Other mechanisms

independent of miRNAs or dependent on other miRNAs likely

exist to regulate NR2A expression. A second shRNA (FMRP

#2) that is less effective in knocking down FMRP also induced

the NR2A 30UTR reporter dependent on the miR-125b target

site, but to a weaker extent than shRNA FMRP #1 (Figures S3

and 8D). Together these data indicate that the 30UTR of NR2A

(but not NR1 or NR2B) is normally suppressed by FMRP and

AGO1 as well as by miR-125, and these mechanisms show

partial functional interaction.
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DISCUSSION

FMRP-Associated miRNAs in Brain
The interaction of FMRP with Argonaute proteins led to the idea

that miRNAs could facilitate the selection and/or silencing of

mRNA targets by FMRP (Caudy et al., 2002; Ishizuka et al.,

2002; Jin et al., 2004b). We found that many brain miRNAs (12

out of 17 tested) are associated with FMRP. So far, enrichment

of specific miRNAs (including miR-125) had only been reported

in FMRP immunoprecipitates from fly ovaries (Yang et al., 2009).

How do miRNAs interact with FMRP? The lack of a canonical

miRNA/siRNA binding domain in FMRP suggests that miRNAs

are indirectly associated with FMRP, possibly through Argonaute

proteins that contain a miRNA binding domain and interact with

FMRP in an RNA-independent manner (Caudy et al., 2002;

Ishizuka et al., 2002). We found that AGO1 knockdown enhanced

NR2A reporter expression similar to FMRP knockdown, which is

consistent with the genetic interaction between FMRP and Argo-

naute found in flies (Bolduc et al., 2008; Jin et al., 2004b). Direct

interaction with miRNA has been reported for purified FMRP

in vitro (Plante et al., 2006). It is possible that miRNA and mRNA

together could act as the ‘‘kissing complex’’ RNA structure

proposed to bind the KH2 domain (Bassell and Warren, 2008;

Darnell et al., 2005a). Our data cannot tell whether miRNAs asso-

ciate with FMRP directly or indirectly (e.g., through independent

binding of miRNA and FMRP to the same mRNA complex), nor

do they reveal the molecular mechanism by which miR-125b and

FMRP collaborate to suppress NR2A 30UTR-regulated translation.

The data that suggest a functional interaction of FMRP and

specific miRNAs in neurons can be summarized as follows. First,

knockdown of FMRP prevented the very different effects of over-

expression of FMRP-associated miRNAs 125b and 132 on spine

morphology. Second, removing the miR-125b target site from

the NR2A 30UTR dampens regulation of the latter by FMRP,

implying that miR-125b assists FMRP in regulating NR2A. We

emphasize that miRNAs 125b and 132 could also have multiple

effects in neurons that are independent of FMRP.

Regulation of Synapse Structure and Function
by miR-125b and miR-132
Remarkably, miR-125b and miR-132 showed largely opposing

effects on dendritic spines. Overexpression of miR-125b

induced long narrow spines, which correlated with a reduction

in mEPSC amplitude. Conversely, sponging of endogenous

miR-125 increased the average width of dendritic protrusions.

These results provide strong evidence that miR-125b regulates

synapse structure and function. Interestingly, endogenous

miR-125b levels are highest in young neurons (DIV3), when filo-

podia-like protrusions are predominant. Recent studies using

gene ontology analysis of putative miR-125b targets suggests

a role for this miRNA in neuronal differentiation and cytoskeletal

organization (Chi et al., 2009; Le et al., 2009).

We identified NR2A as a target gene of miR-125b, but unlike

NR1 and NR2B, this NMDAR subunit has so far not been linked

to spine morphogenesis (Alvarez et al., 2007; Kim et al., 2005;

Ultanir et al., 2007). NR2A overexpression did not rescue the

effect of miR-125b overexpression on spine morphology (data

not shown), suggesting NR2A downregulation is not a major
cause of altered spine morphology. In reporter assays the

EphA4 30UTR was modestly repressed by miR-125b (Figure S5).

Because loss of EphA4 promotes the formation of filopodia-like

protrusions in hippocampal neurons (Murai et al., 2003), it is

possible that the suppression of EphA4 (together with other

unidentified targets) contributes to the miR-125b overexpression

phenotype.

In contrast to miR-125b, overexpressing miR-132 hippo-

campal neurons increased dendritic protrusion width and

increased mEPSC amplitude. Recently, Siegel et al. (2009) re-

ported that miR-132 inhibition caused a slight reduction in spine

volume. In our hands, sponging of miR-132 had little effect on

dendritic spines, but caused a significant reduction in dendritic

complexity. This is consistent with the positive effect of miR-

132 on dendrite branching through repression of p250GAP,

which has been described in younger neurons (Vo et al., 2005;

Wayman et al., 2008). Knockdown of p250GAP has recently

been shown to enlarge dendritic spines in mouse neurons (Naka-

zawa et al., 2008), which could help explain the increased spine

width we observed upon miR-132 overexpression.

The fact that miR-125b and miR-132 associate with FMRP and

affect dendritic spine morphology does not necessarily mean

that these miRNAs play a key role in the spine phenotype of

FXS. The complexity of this issue is highlighted by the opposing

effects of miR-125b and miR-132 on spine size and shape.

Indeed it is unlikely that a single or a few FMRP-associated

miRNAs (or mRNAs) can fully explain the morphological and

functional features of FXS.

Regulation of NR2A by miR-125b and FMRP
The 30 UTR of NR2A contains an evolutionarily conserved site

that matches the miR-125b target sequence and that largely

mediates suppression by endogenous miR-125b in neurons.

We confirmed regulation of NR2A upon miR-125b overexpres-

sion and sponging by use of luciferase reporters, immunoblot-

ting of endogenous protein levels and NMDAR-EPSC record-

ings. In addition to being controlled by miR-125, the NR2A

30UTR reporter was also upregulated by knockdown of FMRP

or AGO1. Importantly, deleting the major miR-125b target site

within the NR2A 30UTR impairs upregulation by FMRP knock-

down, suggesting that miR-125b participates in FMRP regula-

tion of NR2A. Consistent with NR2A mRNA being a target of

FMRP, we found NR2A mRNA to be associated with FMRP in

rodent brain. Together, these data suggest that NR2A translation

may be regulated by miR-125b and FMRP in vivo.

We could not detect significant changes in total protein levels

of NR1, NR2A, or NR2B in the hippocampus of FMR1 KO mice

(Figure S8). This is perhaps not surprising, given that FMR1

KO usually has subtle or no overt effects even on expression of

‘‘established’’ FMRP target genes (Bassell and Warren, 2008;

Darnell et al., 2005b; Muddashetty et al., 2007). Moreover,

FMRP may regulate its target mRNAs only at a specific subcel-

lular location without altering total protein levels. Given that the

NR2A/NR2B ratio appears to be an important determinant of

NMDA receptor signaling, even subtle effects on NR2A expres-

sion by miRNAs might influence synaptic plasticity (Barria and

Malinow, 2005; Kim et al., 2005; Philpot et al., 2007). It should

be pointed out, however, that miR-125b and FMRP impact
Neuron 65, 373–384, February 11, 2010 ª2010 Elsevier Inc. 381
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multiple targets and pathways, and altered expression of NR2A

per se is unlikely to be the key mediator of miR-125b and FMRP

effects on synapse structure and function.

What is known about NMDA receptor function in FMR1 KO

mice? Loss of FMRP enhances NMDAR function in young mice

(Pfeiffer and Huber, 2007; Pilpel et al., 2009) but not in adult

mice (Pilpel et al., 2009; Zhao et al., 2005). Moreover, several

forms of NMDA-receptor-dependent plasticity are impaired by

loss of FMRP. LTP is abolished in cortex and amygdala (but

not hippocampus), the threshold for spike-timing-dependent

plasticity is increased, and ocular dominance plasticity is altered

(Desai et al., 2006; Dolen et al., 2007; Li et al., 2002; Meredith

et al., 2007; Zhao et al., 2005). These are changes that could

conceivably be due, in part, to altered NMDA receptor function

or signaling at the synapse. Investigating NMDA receptor func-

tion in greater detail in FMR1 KO mice should be informative

and may lead to novel intervention strategies for FXS treatment.

EXPERIMENTAL PROCEDURES

Antibodies

NR1 (mouse, BD Bioscience), NR2A (rabbit, Covance), NR2B (mouse, Neuro-

mab), PSD-95 (mouse, Neuromab), FMRP (rabbit, ab17722, Abcam), b-galac-

tosidase (rabbit, ICN; mouse, Promega), EGFP (rabbit, MBL), b3-tubulin

(mouse, Sigma), MAP1B (mouse, Santa Cruz), EphA4 (rabbit, Santa Cruz),

and p250GAP antibody (Nakazawa et al., 2003) were used.

DNA Constructs

For miRNA expression in neurons, we cloned the complete miRNA precursor

hairpin with ten nucleotide genomic context extending to the 50 and 30 side of

the stem in each direction (to allow proper processing) using synthetic oligonu-

cleotides (Table S1) into a vector containing the chicken b-actin promoter

(Zeng et al., 2005). These constructs were used in Figures S1, S2, 2, 3, 5,

and 7B. A second generation of miRNA expression constructs based on the

FhSynW vector (Nakagawa et al., 2006) allowed robust expression in

HEK293 cells and lentiviral packaging. Genomic miRNA precursor sequences

(165 to 376 nucleotide fragments) were amplified by PCR and cloned into the

30UTR of mCherry (Shaner et al., 2004) driven by the human synapsin 1

promoter. These constructs were used for transfection (Figures S4, S5, and

6B) and lentiviral expression (Figure 7A). Viral particles were packaged using

a third-generation system (Tiscornia et al., 2006).

For single-cell analysis, EGFP-based miRNA sensors were constructed by

cloning several perfect match miRNA target sites into the 30UTR of a TK

promoter-driven EGFP. mOrange (Shaner et al., 2004) was expressed from

the same plasmid to identify transfected cells regardless of EGFP expression

level. For quantification using luciferase assays, the miRNA target sites were

subcloned into the 30UTR of FF-luc (driven by human synapsin 1 promoter).

Specific miRNA sponges (Ebert et al., 2007) were constructed by concate-

merizing annealed oligonucleotides containing a bulged-match miRNA

binding site inside of two linkers, each containing restriction sites for cloning

(see Table S1). After ligation, the appropriate size concatemers were PCR

amplified and cloned (NotI-SalI) into the 30UTR of mCherry cDNA driven by

b-actin promoter.

30UTRs fragments of putative miRNA targets (Table S1) were cloned from rat

brain cDNA into a modified pGL3-control vector (Promega). In neurons, NR1,

NR2A, and NR2B 30UTR FF-luc reporter were expressed under the control of

human synapsin 1 promoter to boost FF-luc activity.

shRNA targeting FMRP (rat and mouse, #1 GTGATGAAGTTGAGGTTTA and

#2 CCACCAAATCGTACAGATA), AGO1 (rat and human, GAGAAGAGGTGCT

CAAGAA) (Meister et al., 2004a), Luc (CGTACGCGGAATACTTCGA) (Zhang

and Macara, 2006), ZnT3 (rat and mouse, GCCTCATCCCGGCTCTATT, gift

from J. Jaworski) and EGFP (GCAAAGACCCCAACGAGAA, gift from J. Jawor-

ski) at the indicated sites were cloned into pSUPER (Oligoengine). All

constructs were verified by DNA-sequencing.
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FMRP-IP, RNA Extraction, Reverse Transcription,

and Quantitative PCR

We followed the standard procedure for FMRP immunoprecipitation used to

identify mRNA targets (Brown et al., 2001). Mouse brains were homogenized

in 2 ml ice-cold lysis buffer (10 mM HEPES [pH 7.4], 200 mM NaCl, 30 mM

EDTA, 0.5% Triton X-100, 1 U/ml SUPERase inhibitor, protease and phospha-

tase inhibitor cocktail 1:100). After removing the nuclear fraction (3000 g,

10 min), the NaCl concentration was raised to 400 mM to dissociate FMRP

from ribosomes and insoluble material was removed (70,000 g, 20 min). After

adding 100 mg/ml yeast tRNA (Sigma) to block nonspecific RNA binding, the

extracts were precleared with Protein A-Sepharose (30 min at 4�C). One part

of the extract was saved and ten parts were used for immunoprecipitation

with FMRP antibodies (15 mg with 40 ml Protein A-Sepharose slurry) for 2 hr at

4�C. Beads were washed five times with lysis buffer containing 0.1 U/ml

SUPERase inhibitor and 10 mg/ml yeast tRNA (for the first four washes only).

Bound RNA was extracted with mirVana miRNA isolation kit (Applied Biosys-

tems) and subjected to real-time RT-PCR using TaqMan assays to quantify

mature miRNAs (Applied Biosystems) and SYBR green PCR (Applied Biosys-

tems) for mRNA quantification (see Table S1 for oligonucleotides). For the latter,

RNA was reverse transcribed using random hexamer primers with the Message

Sensor kit (Applied Biosystems). miRNA recovery was calculated as the ratio of

miRNA found in FMRP-immunoprecipitation compared with brain extracts and

normalized to spliceosomal RNA U6 (also quantified using a TaqMan assay) to

compensate for unspecific RNA pulldown. mRNA recovery was calculated

accordingly and normalized to PGK1, all quantified by SYBR green PCR.

Analysis of ‘‘Species-Tagged’’ mRNA in FMRP Immunoprecipitates

Half a rat brain (containing FMRP-bound mRNA) was homogenized together

with four FMR1 KO mouse brains (lacking FMRP). An aliquot of the resulting

lysate and the FMRP immunoprecipitate (prepared as above) was subjected

to RNA extraction and reverse transcription. Specific gene fragments were

PCR amplified until saturation using bispecific primers matching rat and

mouse mRNAs (50 cycles using taq, Sigma). PCR products were TOPO cloned

into pCR4 vector (Invitrogen). After transformation the inserts from 48 indi-

vidual colonies were PCR amplified (with backbone-specific primers CACA

CAGGAAACAGCTATGACCATG and GACGTTGTAAAACGACGGCCAGTG).

Five microliters of the PCR reaction was analyzed using species-specific

restriction enzymes for GAPDH (rat MboI, mouse HindIII), MAP1b (rat BanII,

mouse MboII), NR1 (rat BanII, mouse PflFI), NR2A (rat MboI, mouse BsrBI),

NR2B (rat MspI, mouse BsaHI), or p250GAP (rat MboII, mouse HinP1I).

Neuron Culture, Transfection, and Immunostaining

Hippocampal neurons were cultured from embryonic day 19 rat embryos as

described previously (Tada et al., 2007). After transfection (Lipofectamine

2000, Invitrogen) neuron morphology was visualized by cotransfected EGFP

or b-galactosidase. Confocal microscopy and analysis of neuron morphology

were as described previously (Tada et al., 2007). Image acquisition and

analysis were performed blind to the experimental conditions.

Electrophysiology

Miniature synaptic events from sister cultures of hippocampal neurons co-

transfected with EGFP and miRNA overexpression or sponge constructs

were recorded and analyzed as described previously (Seeburg et al., 2008).

Organotypic hippocampal slice cultures from postnatal day 8 rats were

prepared, cultured, and biolistically transfected (DIV11+4) as described else-

where (Futai et al., 2007). Evoked NMDA receptor currents from CA1 pyramidal

neurons were recorded at room temperature (Futai et al., 2007).

Luciferase Assays

HEK293 cells were cotransfected with FF-luc 30UTR reporters and constructs

expressing RR-luc, miRNA, and EGFP at a DNA ratio of 40:40:80:10 using Lip-

ofectamine 2000. All experiments were performed in 96-well plates with six

replicates for each condition. Two days after transfection luciferase activity

was quantified using Dual-Glo Luciferase Assay (Promega). Relative expres-

sion of reporter constructs was determined by normalizing the ratio of FF-luc

and RR-luc activity to a control miRNA (let-7c or miR-124) and the effect of

each miRNA on a control FF-luc reporter (not containing the heterologous
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30UTR). Similarly, hippocampal neurons (DIV4) were cotransfected with plas-

mids expressing shRNA or sponges, FF-luc reporters, RR-luc, and EGFP

at a DNA ratio of 60:40:40:10 using Lipofectamine 2000 and analyzed 3 days

later as above.

FMR1 KO Mice and Quantitative Immunoblotting

FMR1 KO mice (Dutch-Belgian Fragile X Consortium, 1994) in C57/B6 back-

ground were obtained from S. Tonegawa. Mouse housing and euthanasia

were performed in compliance with federal and institutional guidelines. For

each experiment age-matched male mice, if possible from the same litter,

were used. Hippocampi were homogenized in 0.32 M sucrose, 4 mM HEPES

(pH 7.4) together with protease and phosphatase inhibitor mix (Sigma). Immu-

noblots were quantified by densitometry and normalized to loaded protein

(SYPRO Ruby, Invitrogen).
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