74 research outputs found

    Natural and Induced Seismicity in the Lake Erie-Lake Ontario Region: Reactivation of Ancient Faults with Little Neotectonic Displacement

    Get PDF
    The two most prominent seismic zones in the Lake Erie-Lake Ontario region are associated with the Akron magnetic lineament and with the Clarendon-Linden fault. Both these features are recognized from geophysical data as regional basement structures related to the Grenville collisional orogen. Neotectonic displacement is not geologically evident, although Paleozoic reactivation is manifested by the Clarendon-Linden fault. We have sharpened the definition of seismic zones in the region by introducing newly discovered events, improving constraints on locations and size for many others, and omitting unreliable ones. This seismicity tends to occur on old faults with minor neotectonic displacements. Related conclusions are: 1) neotectonic surface displacement is not necessary for fault capability, 2) seismogenic faults may have geological and/or geophysical expressions, and 3) a stationary moment release at the historic level requires more capable faults than the ones active during the historic period. Waste fluid injection, oil recovery, and salt-brine recovery have been implicated in cases of induced seismicity in the study area and might have contributed a significant portion of the known earthquakes. Fluid is being injected into the basal platform formation at a depth of 1.8 km near Ashtabula, Ohio. In July 1987, about a year after the onset of injection, a mbLg=3.8 main shock occurred within a 60 km wide area with no known prior seismicity. Aftershocks detected by a short-term local seismic network define a vertical left-lateral fault in the basement just below the platform rocks as close as 700 m from the injection well, probably a reactivated pre-existing fault. Subsequent seismicity suggests a westward migration by 5-10 km, possibly along the same fault.Les deux principales zones sismiques de la rĂ©gion sont associĂ©es au linĂ©ament magnĂ©tique d'Akron et Ă  la faille de Clarendon-Linden. Selon les donnĂ©es gĂ©ophysiques, ces deux Ă©lĂ©ments sont reconnus comme Ă©tant des structures rĂ©gionales du socle reliĂ©s Ă  l'orogenĂšse de Grenville. On a prĂ©cisĂ© la dĂ©termination des zones sismiques dans la rĂ©gion en ajoutant les sĂ©ismes dĂ©couverts rĂ©cemment, en prĂ©cisant les lieux et les dimensions d'autres sĂ©ismes et en Ă©liminant ceux qui sont mal connus. La sismicitĂ© tend Ă  se manifester dans d'anciennes failles avec peu de dĂ©calage nĂ©otectonique. On en conclut que 1) le dĂ©calage nĂ©otectonique superficiel ne met pas en cause la compĂ©tence d'une faille; 2) les failles d'origine sismique peuvent avoir des manifestations gĂ©ologiques ou gĂ©ophysiques; 3) un relĂąchement momentanĂ© localisĂ© survenant au cours de la pĂ©riode historique requiert plus de compĂ©tence qu'en ont les failles actives au cours de cette pĂ©riode. L'injection de liquide, la rĂ©cupĂ©ration de pĂ©trole ou de sel ont Ă©tĂ© impliquĂ©es dans les cas de sismicitĂ© provoquĂ©e dans la rĂ©gion et ont probablement causĂ© une bonne partie des sĂ©ismes connus. PrĂšs d'Ashtabula, en Ohio, on a injectĂ© des liquides Ă  une profondeur de 1,8 km Ă  la base de la plate-forme. En juillet 1987, environ un an aprĂšs le dĂ©but des injections, un sĂ©isme de mbLg= 3,8 s'est produit dans une aire de 60 km de superficie apparamment non sismique. Les rĂ©pliques enregistrĂ©es par un rĂ©seau temporaire ont laissĂ© voir une faille verticale Ă  dĂ©crochement sĂ©nestre, immĂ©diatement sous la plate-forme rocheuse, Ă  prĂšs de 700 m du puits d'injection; il s'agit probablement d'une faille rĂ©activĂ©e. Par la suite, la sismicitĂ© indique une migration de 5 Ă  10 km, probablement le long de la mĂȘme faille.Die zwei hauptsĂ chlichen seismischen Zonen in der Eriesee-Ontariosee-Region werden mit dem magnetischen Lineament von Akron in Verbindung gebracht. Mittels geophysikalischer Daten erkennt man in diesen Bildungen rĂ©gionale Untergrundstrukturen, die mit der Kollisions-Orogenese von Grenville verbunden sind. Wir haben die Definition der seismischen Zonen in dem Gebiet prĂ zisiert, indem wir kĂčrzlich entdeckte Erdbeben ergĂ nzt und fur viele andere die Definition der Ort und GroRe betreffenden ZwĂ nge verbessert haben, und die UnzuverlĂ ssigen weggelassen haben. DiĂšse Erdbeben haben die Tendenz, auf alten Verwerfungen mit geringen neotektonischen Verstellungen aufzutreten. Hieraus kann man schlieBen: 1) neotektonische OberflĂ chenverstellung ist keine Bedingung fur VerwerfungsfĂąhigkeit, 2) durch Erdbeben entstandene Verwerfungen kĂŽnnen sich geologisch und/oder geophysikalisch ausdrĂčcken und 3) eine ortsgebundene momentanĂ© Entlastung auf historischer Ebene erfor-dert mehr fĂ hige Verwerfungen als die, welche wĂ hrend der historischen PĂ©riode aktiv waren, In den Fallen von induziertem Auftreten von Erdbeben im untersuchten Gebiet waren ZufĂčhrung von FlĂčssigkeit und ĂŽl- und Salzgewinnung beteiligt, und sie haben wohl einen bedeutenden Anteil der bekannten Erdbeben hervorgerufen. Bei Ashtabula, Ohio, hat man in einer Tiefe von 1.8 km FlĂčssigkeit an der Basis der Plattformbildung eingespritzt. Im JuIi 1987, etwa ein Jahr nach Beginn der Ein-spritzungen, kam es zu einem neuen gewi-chtigen Beben von mbM) = 3.8 innerhalb eines 60 km breiten Gebiets, in dem vorher kein Erdbeben bekannt war. Nach beben, die von einem kurzfristigen ĂŽrtlichen Erdbeben-Netzwerk registriert wurden, ergeben eine vertikale linksseitige Verwerfung im Untergrund unter der Felsenplattform, etwa 700 m vom Einspritzungsbohrloch entfernt; es handelt sich moglicherweise um eine reaktivierte, schon existierende Verwerfung. Darauffolgende Erdbeben weisen auf eine Wanderung westwĂ rts von 5-10 km, moglicherweise Iangs derselben Verwerfung

    The 1912 Iceland earthquake rupture: Growth and development of a nascent transform system

    Get PDF
    We have mapped in detail surface ruptures of the 1912 magnitude 7.0 strike-slip earthquake in south Iceland. This earthquake ruptured fresh basalt flows that had covered the pre-existing fault. The observed style of surface fracturing closely matches both theoretical predictions of the first stages of shear fracture development and microscopic-scale observations from laboratory experiments. The shear offset distributed across the zone of surface fractures produced by this earthquake is right-lateral and is in the range of 1 to 3 m. Total mapped rupture length is 9 km, but total rupture length is probably at least ∌ 20 km. This interplate earthquake had an exceptionally high ratio of slip to fault length and, by inference, stress drop. The north-south trending rupture of the 1912 earthquake is part of the “bookshelf” faulting in the east-west trending South Iceland Seismic Zone. We ascribe the “bookshelf” faulting in the South Iceland Seismic Zone to a combination of the early development stage of the transform and regional strength anisotropy of the crust.This research was supported by the National Science Foundation, the Icelandic National Power Authority (Landsvirkjun), and the Department of Geological Sciences of Columbia University. Lamont-Dohert Contribution 5036.Peer Reviewe

    Seismicity and fault interaction, Southern San Jacinto Fault Zone and adjacent faults, southern California: Implications for seismic hazard

    Get PDF
    The southern San Jacinto fault zone is characterized by high seismicity and a complex fault pattern that offers an excellent setting for investigating interactions between distinct faults. This fault zone is roughly outlined by two subparallel master fault strands, the Coyote Creek and Clark-San Felipe Hills faults, that are located 2 to 10 km apart and are intersected by a series of secondary cross faults. Seismicity is intense on both master faults and secondary cross faults in the southern San Jacinto fault zone. The seismicity on the two master strands occurs primarily below 10 km; the upper 10 km of the master faults are now mostly quiescent and appear to rupture mainly or solely in large earthquakes. Our results also indicate that a considerable portion of recent background activity near the April 9, 1968, Borrego Mountain rupture zone (M_L=6.4) is located on secondary faults outside the fault zone. We name and describe the Palm Wash fault, a very active secondary structure located about 25 km northeast of Borrego Mountain that is oriented subparallel to the San Jacinto fault system, dips approximately 70° to the northeast, and accommodates right-lateral shear motion. The Vallecito Mountain cluster is another secondary feature delineated by the recent seismicity and is characterized by swarming activity prior to nearby large events on the master strand. The 1968 Borrego Mountain and the April 28, 1969, Coyote Mountain (M_L=5.8) events are examples of earthquakes with aftershocks and subevents on these secondary and master faults. Mechanisms from those earthquakes and recent seismic data for the period 1981 to 1986 are not simply restricted to strike-slip motion; dipslip motion is also indicated. Teleseismic body waves (long-period P and SH) of the 1968 and 1969 earthquakes were inverted simultaneously for source mechanism, seismic moment, rupture history, and centroid depth. The complicated waveforms of the 1968 event (M_o=1.2 × 10^(19) Nm) are interpreted in terms of two subevents; the first caused by right-lateral strike-slip motion in the mainshock along the Coyote Creek fault and the second by a rupture located about 25 km away from the master fault. Our waveform inversion of the 1969 event indicates that strike-slip motion predominated, releasing a seismic moment of 2.5 × 10^(17) Nm. Nevertheless, the right-lateral nodal plane of the focal mechanism is significantly misoriented (20°) with respect to the master fault, and hence the event is not likely to be associated with a rupture on that fault. From this and other examples in southern California, we conclude that cross faults may contribute significantly to seismic hazard and that interaction between faults has important implications for earthquake prediction

    Evidence for widespread creep on the flanks of the Sea of Marmara transform basin from marine geophysical data

    Get PDF
    "Wave" fields have long been recognized in marine sediments on the flanks of basins and oceans in both tectonically active and inactive environments. The origin of "waves" (hereafter called undulations) is controversial; competing models ascribe them to depositional processes, gravity-driven downslope creep or collapse, and/or tectonic shortening. Here we analyze pervasive undulation fields identified in swath bathymetry and new high-resolution multichannel seismic (MCS) reflection data from the Sea of Marmara, Turkey. Although they exhibit some of the classical features of sediment waves, the following distinctive characteristics exclude a purely depositional origin: (1) parallelism between the crests of the undulations and bathymetric contours over a wide range of orientations, (2) steep flanks of the undulations (up to ĂąË†ÂŒ40°), and (3) increases in undulations amplitude with depth. We argue that the undulations are folds formed by gravity-driven downslope creep that have been augmented by depositional processes. These creep folds develop over long time periods (≄0.5 m.y.) and stand in contrast to geologically instantaneous collapse. Stratigraphic growth on the upslope limbs indicates that deposition contributes to the formation and upslope migration of the folds. The temporal and spatial evolution of the creep folds is clearly related to rapid tilting in this tectonically active transform basin
    • 

    corecore