118 research outputs found

    Anomalous Scale Dimensions from Timelike Braiding

    Full text link
    Using the previously gained insight about the particle/field relation in conformal quantum field theories which required interactions to be related to the existence of particle-like states associated with fields of anomalous scaling dimensions, we set out to construct a classification theory for the spectra of anomalous dimensions. Starting from the old observations on conformal superselection sectors related to the anomalous dimensions via the phases which appear in the spectral decomposition of the center of the conformal covering group Z(SO(d,2)~),Z(\widetilde{SO(d,2)}), we explore the possibility of a timelike braiding structure consistent with the timelike ordering which refines and explains the central decomposition. We regard this as a preparatory step in a new construction attempt of interacting conformal quantum field theories in D=4 spacetime dimensions. Other ideas of constructions based on the AdS5AdS_{5}-CQFT4CQFT_{4} or the perturbative SYM approach in their relation to the present idea are briefly mentioned.Comment: completely revised, updated and shortened replacement, 24 pages tcilatex, 3 latexcad figure

    Behavior specification in a software design system

    Full text link
    A technique for software system behavior specification appropriate for use in designing systems with concurrency is presented. The technique is based upon a generalized ability to define events, or significant occurrences in a software system, and then indicate whatever constraints the designer might wish to see imposed upon the ordering or simultaneity of those events. Constructs implementing this technique in the DREAM software design system are presented and illustrated. The relationship of this technique to other behavior specification techniques is also discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25196/1/0000635.pd

    Parallels between Pathogens and Gluten Peptides in Celiac Sprue

    Get PDF
    Pathogens are exogenous agents capable of causing disease in susceptible organisms. In celiac sprue, a disease triggered by partially hydrolyzed gluten peptides in the small intestine, the offending immunotoxins cannot replicate, but otherwise have many hallmarks of classical pathogens. First, dietary gluten and its peptide metabolites are ubiquitous components of the modern diet, yet only a small, genetically susceptible fraction of the human population contracts celiac sprue. Second, immunotoxic gluten peptides have certain unusual structural features that allow them to survive the harsh proteolytic conditions of the gastrointestinal tract and thereby interact extensively with the mucosal lining of the small intestine. Third, they invade across epithelial barriers intact to access the underlying gut-associated lymphoid tissue. Fourth, they possess recognition sequences for selective modification by an endogenous enzyme, transglutaminase 2, allowing for in situ activation to a more immunotoxic form via host subversion. Fifth, they precipitate a T cell–mediated immune reaction comprising both innate and adaptive responses that causes chronic inflammation of the small intestine. Sixth, complete elimination of immunotoxic gluten peptides from the celiac diet results in remission, whereas reintroduction of gluten in the diet causes relapse. Therefore, in analogy with antibiotics, orally administered proteases that reduce the host's exposure to the immunotoxin by accelerating gluten peptide destruction have considerable therapeutic potential. Last but not least, notwithstanding the power of in vitro methods to reconstitute the essence of the immune response to gluten in a celiac patient, animal models for the disease, while elusive, are likely to yield fundamentally new systems-level insights
    corecore