204 research outputs found

    Updated Post-WMAP Benchmarks for Supersymmetry

    Full text link
    We update a previously-proposed set of supersymmetric benchmark scenarios, taking into account the precise constraints on the cold dark matter density obtained by combining WMAP and other cosmological data, as well as the LEP and b -> s gamma constraints. We assume that R parity is conserved and work within the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking scalar and gaugino masses m_0 and m_1/2. In most cases, the relic density calculated for the previous benchmarks may be brought within the WMAP range by reducing slightly m_0, but in two cases more substantial changes in m_0 and m_1/2 are made. Since the WMAP constraint reduces the effective dimensionality of the CMSSM parameter space, one may study phenomenology along `WMAP lines' in the (m_1/2, m_0) plane that have acceptable amounts of dark matter. We discuss the production, decays and detectability of sparticles along these lines, at the LHC and at linear e+ e- colliders in the sub- and multi-TeV ranges, stressing the complementarity of hadron and lepton colliders, and with particular emphasis on the neutralino sector. Finally, we preview the accuracy with which one might be able to predict the density of supersymmetric cold dark matter using collider measurements.Comment: 43 pages LaTeX, 13 eps figure

    Neutralino relic density in supersymmetric GUTs with no-scale boundary conditions above the unification scale

    Full text link
    We investigate SU(5) and SO(10) GUTs with vanishing scalar masses and trilinear scalar couplings at a scale higher than the unification scale. The parameter space of the models, further constrained by b-\tau Yukawa coupling unification, consists of a common gaugino mass and of \tan\beta. We analyze the low energy phenomenology, finding that A-pole annihilations of neutralinos and/or coannihilations with the lightest stau drive the relic density within the cosmologically preferred range in a significant region of the allowed parameter space. Implications for neutralino direct detection and for CERN LHC experiments are also discussed.Comment: 14 pages, 5 figures, JHEP style. Version accepted for publication in JHE

    Neutralino-Nucleon Cross Section and Charge and Colour Breaking Constraints

    Full text link
    We compute the neutralino-nucleon cross section in several supersymmetric scenarios, taking into account all kind of constraints. In particular, the constraints that the absence of dangerous charge and colour breaking minima imposes on the parameter space are studied in detail. In addition, the most recent experimental constraints, such as the lower bound on the Higgs mass, the bsγb\to s\gamma branching ratio, and the muon g2g-2 are considered. The astrophysical bounds on the dark matter density are also imposed on the theoretical computation of the relic neutralino density, assuming thermal production. This computation is relevant for the theoretical analysis of the direct detection of dark matter in current experiments. We consider first the supergravity scenario with universal soft terms and GUT scale. In this scenario the charge and colour breaking constraints turn out to be quite important, and \tan\beta\lsim 20 is forbidden. Larger values of tanβ\tan\beta can also be forbidden, depending on the value of the trilinear parameter AA. Finally, we study supergravity scenarios with an intermediate scale, and also with non-universal scalar and gaugino masses where the cross section can be very large.Comment: Final version to appear in JHE

    Collider and Dark Matter Searches in Models with Mixed Modulus-Anomaly Mediated SUSY Breaking

    Get PDF
    We investigate the phenomenology of supersymmetric models where moduli fields and the Weyl anomaly make comparable contributions to SUSY breaking effects in the observable sector of fields. This mixed modulus-anomaly mediated supersymmetry breaking (MM-AMSB) scenario is inspired by models of string compactification with fluxes, which have been shown to yield a de Sitter vacuum (as in the recent construction by Kachru {\it et al}). The phenomenology depends on the so-called modular weights which, in turn, depend on the location of various fields in the extra dimensions. We find that the model with zero modular weights gives mass spectra characterized by very light top squarks and/or tau sleptons, or where M_1\sim -M_2 so that the bino and wino are approximately degenerate. The top squark mass can be in the range required by successful electroweak baryogenesis. The measured relic density of cold dark matter can be obtained via top squark co-annihilation at low \tan\beta, tau slepton co-annihilation at large \tan\beta or via bino-wino coannihilation. Then, we typically find low rates for direct and indirect detection of neutralino dark matter. However, essentially all the WMAP-allowed parameter space can be probed by experiments at the CERN LHC, while significant portions may also be explored at an e^+e^- collider with \sqrt{s}=0.5--1 TeV. We also investigate a case with non-zero modular weights. In this case, co-annihilation, A-funnel annihilation and bulk annihilation of neutralinos are all allowed. Results for future colliders are qualitatively similar, but prospects for indirect dark matter searches via gamma rays and anti-particles are somewhat better.Comment: 38 pages including 22 EPS figures; latest version posted to conform with published versio

    Administrative Law as the New Federalism

    Full text link
    corecore