7,003 research outputs found
Overregulation of Health Care: Musings on Disruptive Innovation Theory
Disruptive innovation theory provides one lens through which to describe how regulations may stifle innovation and increase costs. Basing their discussion on this theory, Curtis and Schulman consider some of the effects that regulatory controls may have on innovation in the health sector
Overregulation of Health Care: Musings on Disruptive Innovation Theory
Disruptive innovation theory provides one lens through which to describe how regulations may stifle innovation and increase costs. Basing their discussion on this theory, Curtis and Schulman consider some of the effects that regulatory controls may have on innovation in the health sector
Online, interactive user guidance for high-dimensional, constrained motion planning
We consider the problem of planning a collision-free path for a
high-dimensional robot. Specifically, we suggest a planning framework where a
motion-planning algorithm can obtain guidance from a user. In contrast to
existing approaches that try to speed up planning by incorporating experiences
or demonstrations ahead of planning, we suggest to seek user guidance only when
the planner identifies that it ceases to make significant progress towards the
goal. Guidance is provided in the form of an intermediate configuration
, which is used to bias the planner to go through . We
demonstrate our approach for the case where the planning algorithm is
Multi-Heuristic A* (MHA*) and the robot is a 34-DOF humanoid. We show that our
approach allows to compute highly-constrained paths with little domain
knowledge. Without our approach, solving such problems requires
carefully-crafting domain-dependent heuristics
Online, interactive user guidance for high-dimensional, constrained motion planning
We consider the problem of planning a collision-free path for a
high-dimensional robot. Specifically, we suggest a planning framework where a
motion-planning algorithm can obtain guidance from a user. In contrast to
existing approaches that try to speed up planning by incorporating experiences
or demonstrations ahead of planning, we suggest to seek user guidance only when
the planner identifies that it ceases to make significant progress towards the
goal. Guidance is provided in the form of an intermediate configuration
, which is used to bias the planner to go through . We
demonstrate our approach for the case where the planning algorithm is
Multi-Heuristic A* (MHA*) and the robot is a 34-DOF humanoid. We show that our
approach allows to compute highly-constrained paths with little domain
knowledge. Without our approach, solving such problems requires
carefully-crafting domain-dependent heuristics
Variance Reduction in Monte Carlo Counterfactual Regret Minimization (VR-MCCFR) for Extensive Form Games using Baselines
Learning strategies for imperfect information games from samples of
interaction is a challenging problem. A common method for this setting, Monte
Carlo Counterfactual Regret Minimization (MCCFR), can have slow long-term
convergence rates due to high variance. In this paper, we introduce a variance
reduction technique (VR-MCCFR) that applies to any sampling variant of MCCFR.
Using this technique, per-iteration estimated values and updates are
reformulated as a function of sampled values and state-action baselines,
similar to their use in policy gradient reinforcement learning. The new
formulation allows estimates to be bootstrapped from other estimates within the
same episode, propagating the benefits of baselines along the sampled
trajectory; the estimates remain unbiased even when bootstrapping from other
estimates. Finally, we show that given a perfect baseline, the variance of the
value estimates can be reduced to zero. Experimental evaluation shows that
VR-MCCFR brings an order of magnitude speedup, while the empirical variance
decreases by three orders of magnitude. The decreased variance allows for the
first time CFR+ to be used with sampling, increasing the speedup to two orders
of magnitude
- …