252 research outputs found

    Curation, Spacecraft Recovery and Preliminary Examination for the Stardust Mission: A Perspective from the Curatorial Facility

    Get PDF
    We briefly describe some of the challenges to the Stardust mission, curation and sample preliminary analysis, from the perspective of the Curation Office at the Johnson Space Center. Our goal is to inform persons planning future sample returns, so that they may learn from both our successes and challenges (and avoid some of our mistakes). The Curation office played a role in the mission from its inception, most critically assisting in the design and implementation of the spacecraft contamination control plan, and in planning and documenting the recovery of the spacecraft reentry capsule in Utah. A unique class 100 cleanroom was built to maintain the returned comet and interstellar samples in clean comfort, and to permit dissection and allocation of samples for analysis

    Global standards of Constitutional law : epistemology and methodology

    Get PDF
    Just as it led the philosophy of science to gravitate around scientific practice, the abandonment of all foundationalist aspirations has already begun making political philosophy into an attentive observer of the new ways in which constitutional law is practiced. Yet paradoxically, lawyers and legal scholars are not those who understand this the most clearly. Beyond analyzing the jurisprudence that has emerged from the expansion of constitutional justice, and taking into account the development of international and regional law, the ongoing globalization of constitutional law requires comparing the constitutional laws of individual nations. Following Waldron, the product of this new legal science can be considered as ius gentium. This legal science is not as well established as one might like to think. But it can be developed on the grounds of the practice that consists in ascertaining standards. As abstract types of best “practices” (and especially norms) of constitutional law from around the world, these are only a source of law in a substantive, not a formal, sense. They thus belong to what I should like to call a “second order legal positivity.” In this article I will undertake, both at a methodological and an epistemological level, the development of a model for ascertaining global standards of constitutional law

    Stabilization of single-electron pumps by high magnetic fields

    Full text link
    We study the effect of perpendicular magnetic fields on a single-electron system with a strongly time-dependent electrostatic potential. Continuous improvements to the current quantization in these electron pumps are revealed by high-resolution measurements. Simulations show that the sensitivity of tunnel rates to the barrier potential is enhanced, stabilizing particular charge states. Nonadiabatic excitations are also suppressed due to a reduced sensitivity of the Fock-Darwin states to electrostatic potential. The combination of these effects leads to significantly more accurate current quantization

    Time-resolved Coulomb collision of single electrons

    Full text link
    Precise control over interactions between ballistic electrons will enable us to exploit Coulomb interactions in novel ways, to develop high-speed sensing, to reach a non-linear regime in electron quantum optics and to realise schemes for fundamental two-qubit operations on flying electrons. Time-resolved collisions between electrons have been used to probe the indistinguishability, Wigner function and decoherence of single electron wavepackets. Due to the effects of screening, none of these experiments were performed in a regime where Coulomb interactions were particularly strong. Here we explore the Coulomb collision of two high energy electrons in counter-propagating ballistic edge states. We show that, in this kind of unscreened device, the partitioning probabilities at different electron arrival times and barrier height are shaped by Coulomb repulsion between the electrons. This prevents the wavepacket overlap required for the manifestation of fermionic exchange statistics but suggests a new class of devices for studying and manipulating interactions of ballistic single electrons

    LO-Phonon Emission Rate of Hot Electrons from an On-Demand Single-Electron Source in a GaAs/AlGaAs Heterostructure.

    Get PDF
    Using a recent time-of-flight measurement technique with 1 ps time resolution and electron-energy spectroscopy, we develop a method to measure the longitudinal-optical-phonon emission rate of hot electrons traveling along a depleted edge of a quantum Hall bar. Comparison to a single-particle model implies the scattering mechanism involves a two-step process via an intra-Landau-level transition. We show that this can be suppressed by control of the edge potential profile, and a scattering length >1  mm can be achieved, allowing the use of this system for scalable single-electron device applications

    Anomalous critical fields in quantum critical superconductors.

    Get PDF
    Fluctuations around an antiferromagnetic quantum critical point (QCP) are believed to lead to unconventional superconductivity and in some cases to high-temperature superconductivity. However, the exact mechanism by which this occurs remains poorly understood. The iron-pnictide superconductor BaFe2(As(1-x)P(x))2 is perhaps the clearest example to date of a high-temperature quantum critical superconductor, and so it is a particularly suitable system to study how the quantum critical fluctuations affect the superconducting state. Here we show that the proximity of the QCP yields unexpected anomalies in the superconducting critical fields. We find that both the lower and upper critical fields do not follow the behaviour, predicted by conventional theory, resulting from the observed mass enhancement near the QCP. Our results imply that the energy of superconducting vortices is enhanced, possibly due to a microscopic mixing of antiferromagnetism and superconductivity, suggesting that a highly unusual vortex state is realized in quantum critical superconductors.We thank Igor Mazin and Georg Knebel for useful discussions, and A. M. Adamska for experimental help. This work was supported by the Engineering and Physical Sciences Research Council (Grant No. EP/H025855/1), EuroMagNET II under the EU Contract No. 228043, National Physical Laboratory Strategic Research Programme, and KAKENHI from JSPS.This is the final published version. It first appeared at http://www.nature.com/ncomms/2014/141205/ncomms6679/full/ncomms6679.html
    • …
    corecore