515 research outputs found

    Mir-34a Mimics Are Potential Therapeutic Agents for p53-Mutated and Chemo-Resistant Brain Tumour Cells

    Get PDF
    Chemotherapeutic drug resistance and relapse remains a major challenge for paediatric (medulloblastoma) and adult (glioblastoma) brain tumour treatment. Medulloblastoma tumours and cell lines with mutations in the p53 signalling pathway have been shown to be specifically insensitive to DNA damaging agents. The aim of this study was to investigate the potential of triggering cell death in p53 mutated medulloblastoma cells by a direct activation of pro-death signalling downstream of p53 activation. Since non-coding microRNAs (miRNAs) have the ability to fine tune the expression of a variety of target genes, orchestrating multiple downstream effects, we hypothesised that triggering the expression of a p53 target miRNA could induce cell death in chemo-resistant cells. Treatment with etoposide, increased miR-34a levels in a p53-dependent fashion and the level of miR-34a transcription was correlated with the cell sensitivity to etoposide. miR-34a activity was validated by measuring the expression levels of one of its well described target: the NADH dependent sirtuin1 (SIRT1). Whilst drugs directly targeting SIRT1, were potent to trigger cell death at high concentrations only, introduction of synthetic miR-34a mimics was able to induce cell death in p53 mutated medulloblastoma and glioblastoma cell lines. Our results show that the need of a functional p53 signaling pathway can be bypassed by direct activation of miR-34a in brain tumour cells

    Impact experiments into multiple-mesh targets: Concept development of a lightweight collisional bumper

    Get PDF
    The utility of multiple-mesh targets as potential lightweight shields to protect spacecraft in low-Earth orbit against collisional damage is explored. Earlier studies revealed that single meshes comminute hypervelocity impactors with efficiencies comparable to contiguous targets. Multiple interaction of projectile fragments with any number of meshes should lead to increased comminution, deceleration, and dispersion of the projectile, such that all debris exiting the mesh stack possesses low specific energies (ergs/sq cm) that would readily be tolerated by many flight systems. The study is conceptually exploring the sensitivity of major variables such as impact velocity, the specific areal mass (g/sq cm) of the total mesh stack (SM), and the separation distance (S) between individual meshes. Most experiments employed five or ten meshes with total SM typically less than 0.5 the specific mass of the impactor, and silicate glass impactors rather than metal projectiles. While projectile comminution increases with increasing impact velocity due to progressively higher shock stresses, encounters with multiple-meshes at low velocity (1-2 km/s) already lead to significant disruption of the glass impactors, with the resulting fragments being additionally decelerated and dispersed by subsequent meshes, and, unlike most contiguous single-plate bumpers, leading to respectable performance at low velocity. Total specific bumper mass must be the subject of careful trade-off studies; relatively massive bumpers will generate too much debris being dislodged from the bumper itself, while exceptionally lightweight designs will not cause sufficient comminution, deceleration, or dispersion of the impactor. Separation distance was found to be a crucial design parameter, as it controls the dispersion of the fragment cloud. Substantial mass savings could result if maximum separation distances were employed. The total mass of debris dislodged by multiple-mesh stacks is modestly smaller than that of single, contiguous-membrane shields. The cumulative surface area of all penetration holes in multiple mesh stacks is an order of magnitude smaller than that in analog multiple-foil shields, suggesting good long-term performance of the mesh designs. Due to different experimental conditions, direct and quantitative comparison with other lightweight shields is not possible at present

    Optimising the chick chorioallantoic membrane xenograft model of neuroblastoma for drug delivery

    Get PDF
    Background Neuroblastoma is a paediatric cancer that despite multimodal therapy still has a poor outcome for many patients with high risk tumours. Retinoic acid (RA) promotes differentiation of some neuroblastoma tumours and cell lines, and is successfully used clinically, supporting the view that differentiation therapy is a promising strategy for treatment of neuroblastoma. To improve treatment of a wider range of tumour types, development and testing of novel differentiation agents is essential. New pre-clinical models are therefore required to test therapies in a rapid cost effective way in order to identify the most useful agents. Methods As a proof of principle, differentiation upon ATRA treatment of two MYCN-amplified neuroblastoma cell lines, IMR32 and BE2C, was measured both in cell cultures and in tumours formed on the chick chorioallantoic membrane (CAM). Differentiation was assessed by 1) change in cell morphology, 2) reduction in cell proliferation using Ki67 staining and 3) changes in differentiation markers (STMN4 and ROBO2) and stem cell marker (KLF4). Results were compared to MLN8237, a classical Aurora Kinase A inhibitor. For the in vivo experiments, cells were implanted on the CAM at embryonic day 7 (E7), ATRA treatment was between E11 and E13 and tumours were analysed at E14. Results Treatment of IMR32 and BE2C cells in vitro with 10 μM ATRA resulted in a change in cell morphology, a 65% decrease in cell proliferation, upregulation of STMN4 and ROBO2 and downregulation of KLF4. ATRA proved more effective than MLN8237 in these assays. In vivo, 100 μM ATRA repetitive treatment at E11, E12 and E13 promoted a change in expression of differentiation markers and reduced proliferation by 43% (p < 0.05). 40 μM ATRA treatment at E11 and E13 reduced proliferation by 37% (p < 0.05) and also changed cell morphology within the tumour. Conclusion Differentiation of neuroblastoma tumours formed on the chick CAM can be analysed by changes in cell morphology, proliferation and gene expression. The well-described effects of ATRA on neuroblastoma differentiation were recapitulated within 3 days in the chick embryo model, which therefore offers a rapid, cost effective model compliant with the 3Rs to select promising drugs for further preclinical analysis

    Ferromagnetic resonance study of sputtered Co|Ni multilayers

    Full text link
    We report on room temperature ferromagnetic resonance (FMR) studies of [tt Co2t|2t Ni]×\timesN sputtered films, where 0.1t0.60.1 \leq t \leq 0.6 nm. Two series of films were investigated: films with same number of Co|Ni bilayer repeats (N=12), and samples in which the overall magnetic layer thickness is kept constant at 3.6 nm (N=1.2/tt). The FMR measurements were conducted with a high frequency broadband coplanar waveguide up to 50 GHz using a flip-chip method. The resonance field and the full width at half maximum were measured as a function of frequency for the field in-plane and field normal to the plane, and as a function of angle to the plane for several frequencies. For both sets of films, we find evidence for the presence of first and second order anisotropy constants, K1K_1 and K2K_2. The anisotropy constants are strongly dependent on the thickness tt, and to a lesser extent on the total thickness of the magnetic multilayer. The Land\'e g-factor increases with decreasing tt and is practically independent of the multilayer thickness. The magnetic damping parameter α\alpha, estimated from the linear dependence of the linewidth, H\triangle H, on frequency, in the field in-plane geometry, increases with decreasing tt. This behaviour is attributed to an enhancement of spin-orbit interactions with tt decreasing and in thinner films, to a spin-pumping contribution to the damping.Comment: 18 pages, 13 figure

    Gold nanoparticles delivery in mammalian live cells: a critical review

    Get PDF
    Functional nanomaterials have recently attracted strong interest from the biology community, not only as potential drug delivery vehicles or diagnostic tools, but also as optical nanomaterials. This is illustrated by the explosion of publications in the field with more than 2,000 publications in the last 2 years (4,000 papers since 2000; from ISI Web of Knowledge, ‘nanoparticle and cell’ hit). Such a publication boom in this novel interdisciplinary field has resulted in papers of unequal standard, partly because it is challenging to assemble the required expertise in chemistry, physics, and biology in a single team. As an extreme example, several papers published in physical chemistry journals claim intracellular delivery of nanoparticles, but show pictures of cells that are, to the expert biologist, evidently dead (and therefore permeable). To attain proper cellular applications using nanomaterials, it is critical not only to achieve efficient delivery in healthy cells, but also to control the intracellular availability and the fate of the nanomaterial. This is still an open challenge that will only be met by innovative delivery methods combined with rigorous and quantitative characterization of the uptake and the fate of the nanoparticles. This review mainly focuses on gold nanoparticles and discusses the various approaches to nanoparticle delivery, including surface chemical modifications and several methods used to facilitate cellular uptake and endosomal escape. We will also review the main detection methods and how their optimum use can inform about intracellular localization, efficiency of delivery, and integrity of the surface capping
    corecore