236 research outputs found
Online Searching with an Autonomous Robot
We discuss online strategies for visibility-based searching for an object
hidden behind a corner, using Kurt3D, a real autonomous mobile robot. This task
is closely related to a number of well-studied problems. Our robot uses a
three-dimensional laser scanner in a stop, scan, plan, go fashion for building
a virtual three-dimensional environment. Besides planning trajectories and
avoiding obstacles, Kurt3D is capable of identifying objects like a chair. We
derive a practically useful and asymptotically optimal strategy that guarantees
a competitive ratio of 2, which differs remarkably from the well-studied
scenario without the need of stopping for surveying the environment. Our
strategy is used by Kurt3D, documented in a separate video.Comment: 16 pages, 8 figures, 12 photographs, 1 table, Latex, submitted for
publicatio
The ambivalent shadow of the pre-Wilsonian rise of international law
The generation of American international lawyers who founded the American Society of International Law in 1906 and nurtured the soil for what has been retrospectively called a “moralistic legalistic approach to international relations” remains little studied. A survey of the rise of international legal literature in the U.S. from the mid-19th century to the eve of the Great War serves as a backdrop to the examination of the boosting effect on international law of the Spanish American War in 1898. An examination of the Insular Cases before the US Supreme Court is then accompanied by the analysis of a number of influential factors behind the pre-war rise of international law in the U.S. The work concludes with an examination of the rise of natural law doctrines in international law during the interwar period and the critiques addressed.by the realist founders of the field of “international relations” to the “moralistic legalistic approach to international relation
Modeling the dynamics of hypoxia inducible factor-1α (HIF-1α) within single cells and 3D cell culture systems
HIF (hypoxia inducible factor) is an oxygen-regulated transcription factor that mediates the intracellular response to hypoxia in human cells. There is increasing evidence that cell signaling pathways encode temporal information, and thus cell fate may be determined by the dynamics of protein levels. We have developed a mathematical model to describe the transient dynamics of the HIF-1α protein measured in single cells subjected to hypoxic shock. The essential characteristics of these data are modeled with a system of differential equations describing the feedback inhibition between HIF-1α and prolyl hydroxylases (PHD) oxygen sensors. Heterogeneity in the single-cell data is accounted through parameter variation in the model. We previously identified the PHD2 isoform as the main PHD sensor responsible for controlling the HIF-1α transient response, and make here testable predictions regarding HIF-1α dynamics subject to repetitive hypoxic pulses. The model is further developed to describe the dynamics of HIF-1α in cells cultured as 3D spheroids, with oxygen dynamics parameterized using experimental measurements of oxygen within spheroids. We show that the dynamics of HIF-1α and transcriptional targets of HIF-1α display a non-monotone response to the oxygen dynamics. Specifically we demonstrate that the dynamic transient behaviour of HIF-1α results in differential dynamics in transcriptional targets
Hidden vector dark matter
We show that dark matter could be made of massive gauge bosons whose
stability doesn't require to impose by hand any discrete or global symmetry.
Stability of gauge bosons can be guaranteed by the custodial symmetry
associated to the gauge symmetry and particle content of the model. The
particle content we consider to this end is based on a hidden sector made of a
vector multiplet associated to a non-abelian gauge group and of a scalar
multiplet charged under this gauge group. The hidden sector interacts with the
Standard Model particles through the Higgs portal quartic scalar interaction in
such a way that the gauge bosons behave as thermal WIMPS. This can lead easily
to the observed dark matter relic density in agreement with the other various
constraints, and can be tested experimentally in a large fraction of the
parameter space. In this model the dark matter direct detection rate and the
annihilation cross section can decouple if the Higgs portal interaction is
weak.Comment: 13 pages, 7 figures, JHEP published version (2009) + update of
section 7 (reference to arXiv:0912.4496
Creative collaboration in citizen science and the evolution of ThinkCamps
This chapter discusses how to harness the potential of creative collaboration through ThinkCamp events – an ‘unconference’ style event with an open and creative environment designed to foster co-creation, co-design and collaborative thinking at key points in the citizen science research cycle. It draws on the authors’ experiences of running (and participating in) creative collaborative events and explores their potential to support inclusive, co-creational approaches to citizen science. Finally, it makes specific recommendations for project initiators, event organisers and policymakers
Virtual 3D tumor marking-exact intraoperative coordinate mapping improve post-operative radiotherapy
The quality of the interdisciplinary interface in oncological treatment between surgery, pathology and radiotherapy is mainly dependent on reliable anatomical three-dimensional (3D) allocation of specimen and their context sensitive interpretation which defines further treatment protocols. Computer-assisted preoperative planning (CAPP) allows for outlining macroscopical tumor size and margins. A new technique facilitates the 3D virtual marking and mapping of frozen sections and resection margins or important surgical intraoperative information. These data could be stored in DICOM format (Digital Imaging and Communication in Medicine) in terms of augmented reality and transferred to communicate patient's specific tumor information (invasion to vessels and nerves, non-resectable tumor) to oncologists, radiotherapists and pathologists
Spin induced multipole moments for the gravitational wave amplitude from binary inspirals to 2.5 Post-Newtonian order
Using the NRGR effective field theory formalism we calculate the remaining
source multipole moments necessary to obtain the spin contributions to the
gravitational wave amplitude to 2.5 Post-Newtonian (PN) order. We also
reproduce the tail contribution to the waveform linear in spin at 2.5PN arising
from the nonlinear interaction between the current quadrupole and the mass
monopole.Comment: 17 pages, 4 figures. v2 Minor changes, to appear in JCA
Matter wave functions and Yukawa couplings in F-theory Grand Unification
We study the local structure of zero mode wave functions of chiral matter
fields in F-theory unification. We solve the differential equations for the
zero modes derived from local Higgsing in the 8-dimensional parent action of
F-theory 7-branes. The solutions are found as expansions both in powers and
derivatives of the magnetic fluxes. Yukawa couplings are given by an overlap
integral of the three wave functions involved in the interaction and can be
calculated analytically. We provide explicit expressions for these Yukawas to
second order both in the flux and derivative expansions and discuss the effect
of higher order terms. We explicitly describe the dependence of the couplings
on the U(1) charges of the relevant fields, appropriately taking into account
their normalization. A hierarchical Yukawa structure is naturally obtained. The
application of our results to the understanding of the observed hierarchies of
quarks and leptons is discussed.Comment: Latex, 51 pages, 4 figures, typos corrected, note adde
- …