763 research outputs found

    Lithium Diffusion & Magnetism in Battery Cathode Material LixNi1/3Co1/3Mn1/3O2

    Full text link
    We have studied low-temperature magnetic properties as well as high-temperature lithium ion diffusion in the battery cathode materials LixNi1/3Co1/3Mn1/3O2 by the use of muon spin rotation/relaxation. Our data reveal that the samples enter into a 2D spin-glass state below TSG=12 K. We further show that lithium diffusion channels become active for T>Tdiff=125 K where the Li-ion hopping-rate [nu(T)] starts to increase exponentially. Further, nu(T) is found to fit very well to an Arrhenius type equation and the activation energy for the diffusion process is extracted as Ea=100 meV.Comment: Submitted to Journal of Physics: Conference Series (2014

    Experimental determination of continuous cooling transformation diagram for high strength steel X155CrMoV12

    Get PDF
    The article is a result of investigations which deals with the phase transformations of tool steel X155CrMoV12. The experimental data obtained was used to evaluate the resulting Continuous Cooling Transform (CCT) diagram, which consists of seven dilation curves. All experimental samples from dilatometric analyzes were then subjected to microstructural analyzes and hardness measurements to characterize the microstructure and hardness for each heat treatment mode tested. Atomic Force Microscopy (AFM) microscopy was also used to study the carbides present in steels and their size and shape for all selected cooling modes

    Dilatometric analysis of cooling curves for high strength steel X155CrMoV12

    Get PDF
    The article deals with phase transformations and austenitizing behavior of the X155CrMoV12 tool steel. Dilatation analyses of a series of samples were performed at various cooling rates, chosen in the range from 10 °C/s to 0,1°C/s. Acquired experimental data were used for evaluation of dilatometric curves in order to map the temperature ranges of phase transformations of the austenite to pearlite, bainite or martensite. All experimental samples from dilatometric analyses were then subjected to microstructural analyses and hardness measurements to characterize the microstructure and hardness for each tested heat treatment regime

    The Effect of Calcining Temperature on Photocatalytic Activity of Porous ZnO Architecture

    Get PDF
    Zinc oxide (ZnO) nano crystals assembled porous architecture was prepared by thermal decomposition of zinc oxalate precursor at various temperatures ranging from 400-900°C. The effect of calcining temperature on structure and morphology was examined by scanning electron microscopy (SEM), X-ray diffractometry, thermogravimetry, and BET adsorption analysis. The porous nano crystalline ZnO morphology was developed due to the release of volatile precursor products, while the overall shape of ZnO micro crystals was retained as a legacy of the precursor. The average crystallite size increased with increasing temperature of calcination from approximately 21 nm to 79 nm, while the specific surface area decreased from 30 to 1.7 m2g-1. The photo catalytic performance of prepared ZnO powders was evaluated by degradation of methyl violet 2B, a model compound. The significantly highest photo catalytic activity was achieved with powder calcined at 500°C. This may be attributed to the sufficiently well-developed crystalline arrangement, while the specific surface area is still high enough

    The Effect of Calcining Temperature on Photocatalytic Activity of Porous ZnO Architecture

    Get PDF
    Zinc oxide (ZnO) nano crystals assembled porous architecture was prepared by thermal decomposition of zinc oxalate precursor at various temperatures ranging from 400-900°C. The effect of calcining temperature on structure and morphology was examined by scanning electron microscopy (SEM), X-ray diffractometry, thermogravimetry, and BET adsorption analysis. The porous nano crystalline ZnO morphology was developed due to the release of volatile precursor products, while the overall shape of ZnO micro crystals was retained as a legacy of the precursor. The average crystallite size increased with increasing temperature of calcination from approximately 21 nm to 79 nm, while the specific surface area decreased from 30 to 1.7 m2g-1. The photo catalytic performance of prepared ZnO powders was evaluated by degradation of methyl violet 2B, a model compound. The significantly highest photo catalytic activity was achieved with powder calcined at 500°C. This may be attributed to the sufficiently well-developed crystalline arrangement, while the specific surface area is still high enough

    Importance of Spin-Orbit Interaction for the Electron Spin Relaxation in Organic Semiconductors

    Get PDF
    Despite the great interest organic spintronics has recently attracted, there is only a partial understanding of the fundamental physics behind electron spin relaxation in organic semiconductors. Mechanisms based on hyperfine interaction have been demonstrated, but the role of the spin-orbit interaction remains elusive. Here, we report muon spin spectroscopy and time-resolved photoluminescence measurements on two series of molecular semiconductors in which the strength of the spin-orbit interaction has been systematically modified with a targeted chemical substitution of different atoms at a particular molecular site. We find that the spin-orbit interaction is a significant source of electron spin relaxation in these materials

    A lens-coupled scintillation counter in cryogenic environment

    Full text link
    In this work we present an elegant solution for a scintillation counter to be integrated into a cryogenic system. Its distinguishing feature is the absence of a continuous light guide coupling the scintillation and the photodetector parts, operating at cryogenic and room temperatures respectively. The prototype detector consists of a plastic scintillator with glued-in wavelength-shifting fiber located inside a cryostat, a Geiger-mode Avalanche Photodiode (G-APD) outside the cryostat, and a lens system guiding the scintillation light re-emitted by the fiber to the G-APD through optical windows in the cryostat shields. With a 0.8mm diameter multiclad fiber and a 1mm active area G-APD the coupling efficiency of the "lens light guide" is about 50%. A reliable performance of the detector down to 3K is demonstrated.Comment: 14 pages, 11 figure
    corecore