66 research outputs found

    Potent selective inhibitors of protein kinase C

    Get PDF
    AbstractA series of potent, selective inhibitors of protein kinase C has been derived from the structural lead provided by the microbial broth products, staurosporine and K252a. Our inhibitors block PCK in intact cells (platelets and T cells), and prevent the proliferation of mononuclear cells in response to interleukin 2 (IL2)

    Search for astronomical neutrinos from blazar TXS 0506+056 in super-kamiokande

    Get PDF
    We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS 0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrinos from the same location by the IceCube collaboration. Using Super-Kamiokande neutrino data across several data samples observed from 1996 April to 2018 February we have searched for both a total excess above known backgrounds across the entire period as well as localized excesses on smaller timescales in that interval. No significant excess nor significant variation in the observed event rate are found in the blazar direction. Upper limits are placed on the electron- and muon-neutrino fluxes at the 90% confidence level as 6.0 × 10−7 and 4.5 × 10−7–9.3 × 10−10 [erg cm−2 s−1], respectively

    Search for proton decay into three charged leptons in 0.37 megaton-years exposure of the Super-Kamiokande

    Get PDF
    A search for proton decay into three charged leptons has been performed by using 0.37 Mton⋅years of data collected in Super-Kamiokande. All possible combinations of electrons, muons, and their antiparticles consistent with charge conservation were considered as decay modes. No significant excess of events has been found over the background, and lower limits on the proton lifetime divided by the branching ratio have been obtained. The limits range between 9.2×10^33 and 3.4×10^34 years at 90% confidence level, improving by more than an order of magnitude upon limits from previous experiments. A first limit has been set for the p→μ^−e^+e^+ mode

    Search for astronomical neutrinos from blazar TXS 0506+056 in Super-Kamiokande

    Get PDF
    We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS 0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrinos from the same location by the IceCube collaboration. Using Super-Kamiokande neutrino data across several data samples observed from 1996 April to 2018 February we have searched for both a total excess above known backgrounds across the entire period as well as localized excesses on smaller timescales in that interval. No significant excess nor significant variation in the observed event rate are found in the blazar direction. Upper limits are placed on the electron- and muon-neutrino fluxes at the 90% confidence level as 6.0 × 10−7 and 4.5 × 10−7–9.3 × 10−10 [erg cm−2 s−1], respectively

    Hyper-Kamiokande Design Report

    Get PDF
    325 pages325 pagesOn the strength of a double Nobel prize winning experiment (Super)Kamiokande and an extremely successful long baseline neutrino programme, the third generation Water Cherenkov detector, Hyper-Kamiokande, is being developed by an international collaboration as a leading worldwide experiment based in Japan. The Hyper-Kamiokande detector will be hosted in the Tochibora mine, about 295 km away from the J-PARC proton accelerator research complex in Tokai, Japan. The currently existing accelerator will be steadily upgraded to reach a MW beam by the start of the experiment. A suite of near detectors will be vital to constrain the beam for neutrino oscillation measurements. A new cavern will be excavated at the Tochibora mine to host the detector. The experiment will be the largest underground water Cherenkov detector in the world and will be instrumented with new technology photosensors, faster and with higher quantum efficiency than the ones in Super-Kamiokande. The science that will be developed will be able to shape the future theoretical framework and generations of experiments. Hyper-Kamiokande will be able to measure with the highest precision the leptonic CP violation that could explain the baryon asymmetry in the Universe. The experiment also has a demonstrated excellent capability to search for proton decay, providing a significant improvement in discovery sensitivity over current searches for the proton lifetime. The atmospheric neutrinos will allow to determine the neutrino mass ordering and, together with the beam, able to precisely test the three-flavour neutrino oscillation paradigm and search for new phenomena. A strong astrophysical programme will be carried out at the experiment that will detect supernova neutrinos and will measure precisely solar neutrino oscillation

    Atmospheric neutrino oscillation analysis with improved event reconstruction in Super-Kamiokande IV

    Get PDF
    A new event reconstruction algorithm based on a maximum likelihood method has been developed for Super-Kamiokande. Its improved kinematic and particle identification capabilities enable the analysis of atmospheric neutrino data in a detector volume 32% larger than previous analyses and increase the sensitivity to the neutrino mass hierarchy. Analysis of a 253.9 kton⋅ ⋅ year exposure of the Super-Kamiokande IV atmospheric neutrino data has yielded a weak preference for the normal hierarchy, disfavoring the inverted hierarchy at 74% assuming oscillations at the best fit of the analysis

    Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokande

    Get PDF
    Using 5326 days of atmospheric neutrino data, a search for atmospheric tau neutrino appearance has been performed in the Super-Kamiokande experiment. Super-Kamiokande measures the tau normalization to be 1.47 ± 0.32 under the assumption of normal neutrino hierarchy, relative to the expectation of unity with neutrino oscillation. The result excludes the hypothesis of no-tau appearance with a significance level of 4.6σ. The inclusive charged-current tau neutrino cross section averaged by the tau neutrino flux at SuperKamiokande is measured to be ð0.94 ± 0.20Þ × 10−38 cm2. The measurement is consistent with the Standard Model prediction, agreeing to within 1.5σ

    Search for Neutrinos in Super-Kamiokande Associated with the GW170817 Neutron-star Merger

    Get PDF
    We report the results of a neutrino search in Super-Kamiokande (SK) for coincident signals with the first detected gravitational wave (GW) produced by a binary neutron-star merger, GW170817, which was followed by a short gamma-ray burst, GRB170817A, and a kilonova/macronova. We searched for coincident neutrino events in the range from 3.5 MeV to ~100 PeV, in a time window ±500 s around the gravitational wave detection time, as well as during a 14-day period after the detection. No significant neutrino signal was observed for either time window. We calculated 90% confidence level upper limits on the neutrino fluence for GW170817. From the upward-going-muon events in the energy region above 1.6 GeV, the neutrino fluence limit is 16.00.6+0.7{16.0}_{-0.6}^{+0.7} (21.30.8+1.1{21.3}_{-0.8}^{+1.1}) cm−2 for muon neutrinos (muon antineutrinos), with an error range of ±5° around the zenith angle of NGC4993, and the energy spectrum is under the assumption of an index of −2. The fluence limit for neutrino energies less than 100 MeV, for which the emission mechanism would be different than for higher-energy neutrinos, is also calculated. It is 6.6 × 107 cm−2 for anti-electron neutrinos under the assumption of a Fermi–Dirac spectrum with average energy of 20 MeV
    corecore