21 research outputs found
Spatial-temporal patterns of malaria incidence in Uganda using HMIS data from 2015 to 2019.
BACKGROUND: As global progress to reduce malaria transmission continues, it is increasingly important to track changes in malaria incidence rather than prevalence. Risk estimates for Africa have largely underutilized available health management information systems (HMIS) data to monitor trends. This study uses national HMIS data, together with environmental and geographical data, to assess spatial-temporal patterns of malaria incidence at facility catchment level in Uganda, over a recent 5-year period. METHODS: Data reported by 3446 health facilities in Uganda, between July 2015 and September 2019, was analysed. To assess the geographic accessibility of the health facilities network, AccessMod was employed to determine a three-hour cost-distance catchment around each facility. Using confirmed malaria cases and total catchment population by facility, an ecological Bayesian conditional autoregressive spatial-temporal Poisson model was fitted to generate monthly posterior incidence rate estimates, adjusted for caregiver education, rainfall, land surface temperature, night-time light (an indicator of urbanicity), and vegetation index. RESULTS: An estimated 38.8 million (95% Credible Interval [CI]: 37.9-40.9) confirmed cases of malaria occurred over the period, with a national mean monthly incidence rate of 20.4 (95% CI: 19.9-21.5) cases per 1000, ranging from 8.9 (95% CI: 8.7-9.4) to 36.6 (95% CI: 35.7-38.5) across the study period. Strong seasonality was observed, with June-July experiencing highest peaks and February-March the lowest peaks. There was also considerable geographic heterogeneity in incidence, with health facility catchment relative risk during peak transmission months ranging from 0 to 50.5 (95% CI: 49.0-50.8) times higher than national average. Both districts and health facility catchments showed significant positive spatial autocorrelation; health facility catchments had global Moran's I = 0.3 (p < 0.001) and districts Moran's I = 0.4 (p < 0.001). Notably, significant clusters of high-risk health facility catchments were concentrated in Acholi, West Nile, Karamoja, and East Central - Busoga regions. CONCLUSION: Findings showed clear countrywide spatial-temporal patterns with clustering of malaria risk across districts and health facility catchments within high risk regions, which can facilitate targeting of interventions to those areas at highest risk. Moreover, despite high and perennial transmission, seasonality for malaria incidence highlights the potential for optimal and timely implementation of targeted interventions
Rapid shifts in the age-specific burden of malaria following successful control interventions in four regions of Uganda.
BACKGROUND: Malaria control using long-lasting insecticidal nets (LLINs) and indoor residual spraying of insecticide (IRS) has been associated with reduced transmission throughout Africa. However, the impact of transmission reduction on the age distribution of malaria cases remains unclear. METHODS: Over a 10-year period (January 2009 to July 2018), outpatient surveillance data from four health facilities in Uganda were used to estimate the impact of control interventions on temporal changes in the age distribution of malaria cases using multinomial regression. Interventions included mass distribution of LLINs at all sites and IRS at two sites. RESULTS: Overall, 896,550 patient visits were included in the study; 211,632 aged  15 years. Over time, the age distribution of patients not suspected of malaria and those malaria negative either declined or remained the same across all sites. In contrast, the age distribution of suspected and confirmed malaria cases increased across all four sites. In the two LLINs-only sites, the proportion of malaria cases in  15 years increased from 40 to 61% and 29 to 39%, respectively. In the sites receiving LLINs plus IRS, these proportions increased from 19 to 44% and 18 to 31%, respectively. CONCLUSIONS: These findings demonstrate a shift in the burden of malaria from younger to older individuals following implementation of successful control interventions, which has important implications for malaria prevention, surveillance, case management and control strategies
The impact of an intervention to introduce malaria rapid diagnostic tests on fever case management in a high transmission setting in Uganda: A mixed-methods cluster-randomized trial (PRIME).
Rapid diagnostic tests for malaria (mRDTs) have been scaled-up widely across Africa. The PRIME study evaluated an intervention aiming to improve fever case management using mRDTs at public health centers in Uganda. A cluster-randomized trial was conducted from 2010-13 in Tororo, a high malaria transmission setting. Twenty public health centers were randomized in a 1:1 ratio to intervention or control. The intervention included training in health center management, fever case management with mRDTs, and patient-centered services; plus provision of mRDTs and artemether-lumefantrine (AL) when stocks ran low. Three rounds of Interviews were conducted with caregivers of children under five years of age as they exited health centers (N = 1400); reference mRDTs were done in children with fever (N = 1336). Health worker perspectives on mRDTs were elicited through semi-structured questionnaires (N = 49) and in-depth interviews (N = 10). The primary outcome was inappropriate treatment of malaria, defined as the proportion of febrile children who were not treated according to guidelines based on the reference mRDT. There was no difference in inappropriate treatment of malaria between the intervention and control arms (24.0% versus 29.7%, adjusted risk ratio 0.81 95\% CI: 0.56, 1.17 p = 0.24). Most children (76.0\%) tested positive by reference mRDT, but many were not prescribed AL (22.5\% intervention versus 25.9\% control, p = 0.53). Inappropriate treatment of children testing negative by reference mRDT with AL was also common (31.3\% invention vs 42.4\% control, p = 0.29). Health workers appreciated mRDTs but felt that integrating testing into practice was challenging given constraints on time and infrastructure. The PRIME intervention did not have the desired impact on inappropriate treatment of malaria for children under five. In this high transmission setting, use of mRDTs did not lead to the reductions in antimalarial prescribing seen elsewhere. Broader investment in health systems, including infrastructure and staffing, will be required to improve fever case management
Intermittent preventive treatment of malaria delivered to primary schoolchildren provided effective individual protection in Jinja, Uganda: secondary outcomes of a cluster-randomized trial (START-IPT).
BACKGROUND: Intermittent preventive treatment (IPT) of malaria is recommended as policy for certain high-risk populations, but not currently for schoolchildren. A cluster-randomized trial was conducted to evaluate the effect of IPT with dihydroartemisinin-piperaquine (DP) on primary schoolchildren in Jinja, Uganda. Results of the impact of IPT of schoolchildren on community-level transmission have been reported previously. Here, secondary outcomes from a school-based survey are presented. METHODS: Eighty-four clusters (one primary school plus 100 households) were randomized to intervention and control (1:1 ratio). Participants from intervention schools received monthly IPT with DP for up to 6 rounds (June-December 2014). At endline (November-December 2014), randomly selected children from all 84 schools were surveyed (13 per school) and thick blood smears were done. Those with fever or history of fever were tested with rapid diagnostic tests (RDTs) for malaria. Haemoglobin was measured in every fifth participant. Outcome measures included prevalence of asexual parasites and gametocytes (by microscopy), and prevalence of anaemia. Prevalence outcomes were analysed using generalized linear Poisson models with log link function, incorporating a cluster-level random intercept and quantified using prevalence risk ratios. RESULTS: Among 23,280 students listed on the 42 intervention school registers, 10,079 (43.3%) aged 5-20 years were enrolled into the IPT intervention and received at least one dose of DP; of these, 9286 (92.1%) received at least one full (3-day) course. In total, 1092 children were enrolled into the final school survey (546 per arm) and had a thick blood smear done; of these, 255 had haemoglobin measured (129 intervention, 126 control). Children in the intervention arm were less likely to have asexual parasites (9.2% intervention vs 44.1% control, adjusted risk ratio [aRR] 0.22 [95% CI 0.16-0.30] p < 0.001), gametocytes (3.1% intervention vs 9.5% control, aRR 0.34 [95% CI 0.20-0.56] p < 0.001), fever (20.2% intervention vs 56.2% control, aRR 0.35 [95% CI 0.25-0.50] p < 0.001), or symptomatic malaria (5.1% intervention vs 35.7% control, aRR 0.14 [95% CI 0.08-0.26] p < 0.001). Prevalence of anaemia and mean haemoglobin were similar in both study arms. CONCLUSIONS: School-aged children are a major reservoir of malaria parasites. Delivering IPT to schoolchildren would benefit individual children and may reduce transmission. School-based IPT could help to intensify malaria control toward elimination, and should be considered for policies and programmes. Trial registration Clinicaltrials.gov (NCT02009215), Registered 11 December 2013. https://clinicaltrials.gov/ct2/show/NCT02009215
Effectiveness of in-service training plus the collaborative improvement strategy on the quality of routine malaria surveillance data: results of a pilot study in Kayunga District, Uganda.
BACKGROUND: Surveillance data are essential for malaria control, but quality is often poor. The aim of the study was to evaluate the effectiveness of the novel combination of training plus an innovative quality improvement method-collaborative improvement (CI)-on the quality of malaria surveillance data in Uganda. METHODS: The intervention (training plus CI, or TCI), including brief in-service training and CI, was delivered in 5 health facilities (HFs) in Kayunga District from November 2015 to August 2016. HF teams monitored data quality, conducted plan-do-study-act cycles to test changes, attended periodic learning sessions, and received CI coaching. An independent evaluation was conducted to assess data completeness, accuracy, and timeliness. Using an interrupted time series design without a separate control group, data were abstracted from 156,707 outpatient department (OPD) records, laboratory registers, and aggregated monthly reports (MR) for 4 time periods: baseline-12Â months, TCI scale-up-5Â months; CI implementation-9Â months; post-intervention-4Â months. Monthly OPD register completeness was measured as the proportion of patient records with a malaria diagnosis with: (1) all data fields completed, and (2) all clinically-relevant fields completed. Accuracy was the relative difference between: (1) number of monthly malaria patients reported in OPD register versus MR, and (2) proportion of positive malaria tests reported in the laboratory register versus MR. Data were analysed with segmented linear regression modelling. RESULTS: Data completeness increased substantially following TCI. Compared to baseline, all-field completeness increased by 60.1%-points (95% confidence interval [CI]: 46.9-73.2%) at mid-point, and clinically-relevant completeness increased by 61.6%-points (95% CI: 56.6-66.7%). A relative -Â 57.4%-point (95% confidence interval: -Â 105.5, -Â 9.3%) change, indicating an improvement in accuracy of malaria test positivity reporting, but no effect on data accuracy for monthly malaria patients, were observed. Cost per additional malaria patient, for whom complete clinically-relevant data were recorded in the OPD register, was 3.03, $4.15). CONCLUSIONS: TCI improved malaria surveillance completeness considerably, with limited impact on accuracy. Although these results are promising, the intervention's effectiveness should be evaluated in more HFs, with longer follow-up, ideally in a randomized trial, before recommending CI for wide-scale use
Monitoring antimalarial safety and tolerability in clinical trials: A case study from Uganda
BACKGROUND: New antimalarial regimens, including artemisinin-based combination therapies (ACTs), have been adopted widely as first-line treatment for uncomplicated malaria. Although these drugs appear to be safe and well-tolerated, experience with their use in Africa is limited and continued assessment of safety is a priority. However, no standardized guidelines for evaluating drug safety and tolerability in malaria studies exist. A system for monitoring adverse events in antimalarial trials conducted in Uganda was developed. Here the reporting system is described, and difficulties faced in analysing and interpreting the safety results are illustrated, using data from the trials. CASE DESCRIPTION: Between 2002 and 2007, eleven randomized, controlled clinical trials were conducted to compare the efficacy, safety, and tolerability of different antimalarial regimens for treatment of uncomplicated malaria in Uganda. The approach to adverse event monitoring was similar in all studies. A total of 5,614 treatments were evaluated in 4,876 patients. Differences in baseline characteristics and patterns of adverse event reporting were noted between the sites, which limited the ability to pool and analyse data. Clinical failure following antimalarial treatment confounded associations between treatment and adverse events that were also common symptoms of malaria, particularly in areas of lower transmission intensity. DISCUSSION AND EVALUATION: Despite prospectively evaluating for adverse events, limitations in the monitoring system were identified. New standardized guidelines for monitoring safety and tolerability in antimalarial trials are needed, which should address how to detect events of greatest importance, including serious events, those with a causal relationship to the treatment, those which impact on adherence, and events not previously reported. CONCLUSION: Although the World Health Organization has supported the development of pharmacovigilance systems in African countries deploying ACTs, additional guidance on adverse events monitoring in antimalarial clinical trials is needed, similar to the standardized recommendations available for assessment of drug efficacy
Safety profile of Coartem®: the evidence base
This article reviews the comprehensive data on the safety and tolerability from over 6,300 patients who have taken artemether/lumefantrine (Coartem®) as part of Novartis-sponsored or independently-sponsored clinical trials. The majority of the reported adverse events seen in these studies are mild or moderate in severity and tend to affect the gastrointestinal or nervous systems. These adverse events, which are common in both adults and children, are also typical of symptoms of malaria or concomitant infections present in these patients. The wealth of safety data on artemether/lumefantrine has not identified any neurological, cardiac or haematological safety concerns. In addition, repeated administration is not associated with an increased risk of adverse drug reactions including neurological adverse events. This finding is especially relevant for children from regions with high malaria transmission rates who often receive many courses of anti-malarial medications during their lifetime. Data are also available to show that there were no clinically relevant differences in pregnancy outcomes in women exposed to artemether/lumefantrine compared with sulphadoxine-pyrimethamine during pregnancy. The six-dose regimen of artemether/lumefantrine is therefore well tolerated in a wide range of patient populations. In addition, post-marketing experience, based on the delivery of 250 million treatments as of July 2009, has not identified any new safety concerns for artemether/lumefantrine apart from hypersensitivity and allergies, known class effects of artemisinin derivatives
Safety and tolerability of combination antimalarial therapies for uncomplicated falciparum malaria in Ugandan children.
BACKGROUND: Combination antimalarial therapy is recommended for the treatment of uncomplicated falciparum malaria in Africa; however, some concerns about the safety and tolerability of new regimens remain. This study compared the safety and tolerability of three combination antimalarial regimens in a cohort of Ugandan children. METHODS: A longitudinal, single-blind, randomized clinical trial of children was conducted between November 2004 and May 2007 in Kampala, Uganda. Upon diagnosis of the first episode of uncomplicated malaria, participants were randomized to treatment with amodiaquine + sulphadoxine-pyrimethamine (AQ+SP), artesunate + amodiaquine (AS+AQ), or artemether-lumefantrine (AL). Once randomized, participants received the same regimen for all subsequent episodes of uncomplicated malaria. Participants were actively monitored for adverse events for the first 14 days after each treatment, and then passively followed until their next study medication treatment, or withdrawal from study. Outcome measures included the risk of adverse events at 14 and 42 days after treatment. RESULTS: Of 601 enrolled children, 382 were diagnosed with at least one episode of uncomplicated malaria and were treated with study medications. The median age at treatment was 6.3 years (range 1.1 - 12.3 years). At 14 days of follow-up, AQ+SP treatment was associated with a higher risk of anorexia, weakness, and subjective fever than treatment with AL, and a higher risk of weakness, and subjective fever than treatment with AS+AQ. Treatment with AL was associated with a higher risk of elevated temperature. Repeated episodes of neutropaenia associated with AS+AQ were detected in one participant. Considering only children less than five years, those who received AQ+SP were at higher risk of developing moderate or severe anorexia and weakness than those treated with AL (anorexia: RR 3.82, 95% CI 1.59 - 9.17; weakness: RR 5.40, 95% CI 1.86 - 15.7), or AS+AQ (anorexia: RR 2.10, 95% CI 1.04 - 4.23; weakness: RR 2.26, 95% CI 1.01 - 5.05). Extending the analysis to 42 days of follow-up had little impact on the findings. CONCLUSION: This study confirms the safety and tolerability of AS+AQ and AL in Ugandan children, and suggests that AQ+SP is safe, but less well-tolerated, particularly in younger children. As newer antimalarial regimens are deployed, collecting data on their safety and tolerability will be essential. TRIAL REGISTRATION: Current Controlled Trials Identifier ISRCTN37517549
Practical Implications of a Relationship between Health Management Information System and Community Cohort–Based Malaria Incidence Rates
Global malaria burden is reducing with effective control interventions, and surveillance is vital to maintain progress. Health management information system (HMIS) data provide a powerful surveillance tool; however, its estimates of burden need to be better understood for effectiveness. We aimed to investigate the relationship between HMIS and cohort incidence rates and identify sources of bias in HMIS-based incidence. Malaria incidence was estimated using HMIS data from 15 health facilities in three subcounties in Uganda. This was compared with a gold standard of representative cohort studies conducted in children aged 0.5 to < 11 years, followed concurrently in these sites. Between October 2011 and September 2014, 153,079 children were captured through HMISs and 995 followed up through enhanced community cohorts in Walukuba, Kihihi, and Nagongera subcounties. Although HMISs substantially underestimated malaria incidence in all sites compared with data from the cohort studies, there was a strong linear relationship between these rates in the lower transmission settings (Walukuba and Kihihi), but not the lowest HMIS performance highest transmission site (Nagongera), with calendar year as a significant modifier. Although health facility accessibility, availability, and recording completeness were associated with HMIS incidence, they were not significantly associated with bias in estimates from any site. Health management information systems still require improvements; however, its strong predictive power of unbiased malaria burden when improved highlights the important role it could play as a cost-effective tool for monitoring trends and estimating impact of control interventions. This has important implications for malaria control in low-resource, high-burden countries