11 research outputs found

    Projet Seine-Aval 6 PHARESEE « Productivité microphytobenthique des HAbitats intertidaux en lien avec la dynamique sédimentaire, biogéochimique et les ingénieurs d'écosystème de la faune benthique : implication pour des enjeux de modélisation et de REhabilitation des vasières de la SEine Estuarienne »

    Get PDF
    L'estuaire de la Seine est soumis à divers stress anthropiques et hydro-climatiques. Cet écosystème côtier perd son caractère estuarien à cause d'aménagements qui ont eu comme conséquence de voir disparaître de vastes surfaces de vasières intertidales. Ces habitats fonctionnels jouent un rôle majeur dans le fonctionnement écologique des estuaires, car ils abritent des communautés méio- et macro-benthiques très diversifiées et représentent la principale zone d’alimentation de nombreux vertébrés dont certains d’intérêt écologique ou commercial majeur (e.g. poissons, oiseaux). La dynamique des vasières intertidales est fortement influencée par les processus hydro-sédimentaires estuariens, étant tantôt source, tantôt puits de sédiment. Elles constituent ainsi un élément essentiel des cycles biogéochimiques se déroulant au sein des estuaires. Les caractéristiques morphologiques et biogéochimiques de ces zones vont directement influencer les échanges de matière et d’énergie qui s’y déroulent. Il est donc impératif d'avoir une approche pluridisciplinaire pour comprendre leur fonctionnement. Le projet PHARE-SEE avait pour objectif (i) de mieux comprendre le rôle des bioturbateurs et leur effet sur le microphytobenthos, les paramètres hydrosédimentaires et biogéochimiques dans les vasières de l’estuaire de Seine et (ii) de développer un modèle de production primaire microphytobenthique couplant l’ensemble des paramètres susmentionnés. Le premier objectif du projet a été réalisé en couplant expériences sur le terrain et en laboratoire. Ainsi, des expériences d’exclusion/ensemencement de faune ont été menées sur la vasière Nord, à l’aval de l’estuaire de Seine, et sur 2 faciès sédimentaires contrastés, avec un suivi de la dynamique saisonnière du microphytobenthos et de l’ensemble des paramètres biogéochimiques et hydrosédimentaires. De plus, des expériences en laboratoire ont été réalisées, avec une évaluation des flux diffusifs de nutriments à 2 saisons contrastées (hiver/été) en fonction du mélange sablo-vaseux et de l’intensité de la bioturbation par la macrofaune benthique dominante de la vasière (le ver Hediste diversicolor et le bivalve Scrobicularia plana). Les expériences de terrain ont montré que l’effet saisonnier était plus prononcé que celui des bioturbateurs sur l’ensemble des paramètres biogéochimiques dans le sédiment (matière organique sédimentaire, processus et biomasse microbiens). Contrairement à la matière organique sédimentaire, principalement d’origine terrigène, la matière organique dissoute présente dans les eaux interstitielles, majoritairement d’origine autochtone, est réactive et influencée par l’activité des bioturbateurs. Ces derniers ont une influence prononcée sur l’érodabilité, avec un rôle biostabilisateur efficace pour Hediste diversicolor en été comme en hiver et un rôle déstabilisateur pour Scrobicularia plana exclusivement en été. Malgré des processus de consommations primaires très élevés et des pertes par érosion, le niveau de production primaire microphytobenthique reste par ailleurs très important sur la vasière. Les analyses réalisées ont également révélé le rôle majeur du microphytobenthos dans le réseau trophique pour H. diversicolor, S. plana et la méiofaune (analyses isotopes stables, collaboration projet SA6 SENTINELLES). Les expériences en mésocosme, complémentaires de celles réalisées sur le terrain, ont montré que l’activité de bioturbation des deux ingénieurs d’écosystème diffère quelle que soit la saison. Ainsi, le processus de transport d’eau et des composés dissous (bioirrigation) domine chez H. diversicolor, alors que l’activité de S. plana est dominée par le remaniement sédimentaire. Les flux biogéochimiques à l’interface eau-sédiment sont principalement influencés par la bioirrigation. Enfin, il a été observé que S. plana consomme très activement les biofilms microphytobenthiques et limite fortement leur capacité de développement, alors que la biomasse microphytobenthique n’est pas affectée par les activités de Hediste. Cela démontre que la consommation herbivore est totalement compensée par des effets positifs liés probablement à la bioirrigation, activée de manière générale plus de 40 fois par Hediste. Dans un second temps, ce projet proposait de modéliser la production primaire microphytobenthique en relation avec la dynamique sédimentaire et les processus biogéochimiques. Les données acquises via expériences en laboratoire et sur le terrain ont servi à développer ce modèle. Ainsi, le modèle MARS3D en version Cross-shore 2DV a été implémenté sur la vasière intertidale étudiée avec une très bonne qualité des simulations des processus hydrosédimentaires et des variations altimétriques. L’intégration de l’effet de la bioturbation et de la régulation de l’érodabilité des sédiments a permis d’améliorer encore la qualité des simulations. Un modèle de diffusion thermique a été intégré, testé et amélioré en termes d’interaction avec la composition sédimentaire. Le modèle biogéochimique BLOOM a été intégré également dans le modèle MARS3D avec une dynamique biogéochimique saisonnière bien représentée. Le modèle prend en compte le rôle des bioturbateurs sur les flux diffusifs, mais une perspective d’amélioration doit être envisagée pour mieux reproduire les flux à l’interface eau-sédiment et l’assimilation du NH4 + par le microphytobenthos en surface. Enfin, le modèle de la production primaire microphytobenthique a été implémenté dans le code MARS3D et fournit des simulations de la dynamique spatio-temporelle des biomasses microphytobenthiques intéressantes, même si les flux sont encore sous-estimés dans le modèle et les interactions avec la faune doivent encore être améliorées. Au final, les très nombreuses données issues du projet PHARESEE et le modèle associé serviront à comprendre et relier les nombreux facteurs influençant le fonctionnement des vasières et leurs rôles écosystémiques essentiels – rôle physique, de régulation sur les cycles biogéochimiques et rôle de productivité biologique et soutien au réseau trophique. Des travaux de synthèse ont été engagés en particulier pour tenter d’expliquer le haut niveau de productivité actuel du système en lien avec la bonne santé des espèces sentinelles (ingénieurs d’écosystèmes) de la macrofaune benthique

    Mobile Sources Mixing Model Implementation for a Better Quantification of Hydrochemical Origins in Allogenic Karst Outlets: Application on the Ouysse Karst System

    No full text
    International audienceOn the edge of sedimentary basins, karst aquifers can be fed by several water sources from both autogenic and allogenic recharge. In some cases, assessing water origins can be hard and cause some difficulties for water resource management. The main goal of this study is to show the implementation of the mobile sources mixing model approach. More precisely, this research develops how a monitoring method using a multi-proxy approach can be used to quantify waters sources contributions from several origins at the outlets of a karst system. The study site is the Ouysse karst system, located in western France. The site offers the opportunity to understand the mixing processes between allogenic and autogenic water recharges. The karst system covers a 650 km(2) watershed, and is fed by three different chemical facies: (i) Autogenic water from the direct infiltration on the karstified limestones with high HCO3- values (median: 436 mg.L-1); (ii) Water coming from sinking rivers fed by spring coming from igneous rocks with low mineralization but relatively higher K+ values (median: 4.2 mg.L-1); (iii) Highly mineralized water coming from deep evaporitic layers and feeding another sinking river with very high sulfate concentrations (median: 400 mg.L-1). Sliding window cross-correlation analyses and hydrochemical analyses during a flood event are performed to implement a mobile source mixing model approach. This approach shows significant differences with a simple fixed source mixing model and appears more reliable but requires more time and money to carry out. The results and conclusion of this study will be used for forecasting and managing operational actions for resource management

    Mixing processes of autogenic and allogenic waters in a large karst aquifer on the edge of a sedimentary basin (Causses du Quercy, France)

    No full text
    International audienceOn the edge of sedimentary basins, karst aquifers can be fed by several water origins from both autogenic and allogenic recharge. In some cases, water origin assessment is difficult and issues in water management may arise. The main goal of this study is to understand what controls hydrodynamical and geochemical variations at the outflow of a quite complex and large karst system. More precisely, this study illustrates how a consistent observational setup can be developed, based on a multi-proxy approach that can be used for tracing water origins, evaluating mixing phenomena, and contributions in karst aquifers considering both autogenic and allogenic recharge. The Ouysse karst system (650 km2), located in western France, provides the opportunity of studying water-mixing processes in binary karst systems fed by allogenic and autogenic recharges. Global water chemistry, hydrograph and chemograph analysis during a flood event, and source-mixing calculation were used to evaluate groundwater-flow origins and the contribution of each water type during the studied flood event: (i) karstic water; (ii) evaporite water; (iii) water from igneous-metamorphic rock aquifers. In terms of resource management, the information obtained can be used as a basis of forecasting and management actions

    Water and chemical recharge in subsurface catchment: observations and consequences for modeling

    No full text
    International audienceShallow groundwater that develops on hillslopes is the main compartment in headwater catchments for flow and solute transport to rivers. Although spatial and temporal variations in its chemical composition are reported in the literature, there is no coherent description of the way these variations are organized, nor is there an accepted conceptual model for the recharge mechanisms and flows in the groundwater involved. We instrumented an intensive farming and subsurface dominant catchment located in Oceanic Western Europe (France), included in AgrHyS catchments (for Agro-Hydro-SyStem) and a part of the French network of catchments for environmental research (SOERE RBV dedicated to the Critical Zone). It is strongly constrained by anthropogenic pressures (agriculture) and is characterized by a clear non-equilibrium status. A network of 42 nested piezometers was installed along a 200 m hillslope allowing water sampling in the permanent water table as well as in what we call the fluctuating zone, characterized by seasonal alternance of saturated and unsaturated conditions. Water composition was monitored at high frequency (weekly) over a 3-year period for major anion composition and over a one year period for detailed 15N, CFC, SF6 and other dissolved gases composition. The results demonstrated that (i) the anionic composition in water table fluctuation zone varied significantly compared to deeper portions of the aquifer on the hillslope, confirming that this layer constitutes a main compartment for the mixing of new recharge water and old groundwater, (ii) seasonally, the variations of 15N and CFC are much higher during the recharge period than during the recession period, confirming the preferential flow during early recharge events, iii) variations of nitrate 15N and O18 composition was suggesting any significant denitrification process in the fluctuating zone, confirming the dominance of the mixing processes in the fluctuating zone, iv) deeper parts of the aquifer exhibited seasonal variations with structured hysteretic patterns, suggesting that mixing process also occurred at greater depths and v) these hysteretic patterns were dampered from upslope to downslope, indicating an increased influence of lateral flow downslope. These results indicate that we have to change the way we model subsurface dominant catchment, taken into account the degree of saturation of the catchment, the mixing processes varying from the surface to depth, and upslope to downslope. As of now, we can deduce from these results that the residence times estimated from end member approaches considering the groundwater as homogeneous lumped reservoir are likely to be underestimated. Instrumented observatories are required to understand the anthropogenic and environmental processes and their interactions, to model and predict the effect and the response time of these systems under different constraints. Rouxel, M., Molenat, J., Ruiz, L., Legout C., Faucheux, M., Gascuel-Odoux C., 2011. Seasonal and spatial variation in groundwater quality at the hillslope scale: study in an agricultural headwater catchment in Brittany (France). Hydrological Processes, 25, 831-841

    Projet Seine-Aval 6 PHARESEE « Productivité microphytobenthique des HAbitats intertidaux en lien avec la dynamique sédimentaire, biogéochimique et les ingénieurs d'écosystème de la faune benthique : implication pour des enjeux de modélisation et de REhabilitation des vasières de la SEine Estuarienne »

    Get PDF
    L'estuaire de la Seine est soumis à divers stress anthropiques et hydro-climatiques. Cet écosystème côtier perd son caractère estuarien à cause d'aménagements qui ont eu comme conséquence de voir disparaître de vastes surfaces de vasières intertidales. Ces habitats fonctionnels jouent un rôle majeur dans le fonctionnement écologique des estuaires, car ils abritent des communautés méio- et macro-benthiques très diversifiées et représentent la principale zone d’alimentation de nombreux vertébrés dont certains d’intérêt écologique ou commercial majeur (e.g. poissons, oiseaux). La dynamique des vasières intertidales est fortement influencée par les processus hydro-sédimentaires estuariens, étant tantôt source, tantôt puits de sédiment. Elles constituent ainsi un élément essentiel des cycles biogéochimiques se déroulant au sein des estuaires. Les caractéristiques morphologiques et biogéochimiques de ces zones vont directement influencer les échanges de matière et d’énergie qui s’y déroulent. Il est donc impératif d'avoir une approche pluridisciplinaire pour comprendre leur fonctionnement. Le projet PHARE-SEE avait pour objectif (i) de mieux comprendre le rôle des bioturbateurs et leur effet sur le microphytobenthos, les paramètres hydrosédimentaires et biogéochimiques dans les vasières de l’estuaire de Seine et (ii) de développer un modèle de production primaire microphytobenthique couplant l’ensemble des paramètres susmentionnés. Le premier objectif du projet a été réalisé en couplant expériences sur le terrain et en laboratoire. Ainsi, des expériences d’exclusion/ensemencement de faune ont été menées sur la vasière Nord, à l’aval de l’estuaire de Seine, et sur 2 faciès sédimentaires contrastés, avec un suivi de la dynamique saisonnière du microphytobenthos et de l’ensemble des paramètres biogéochimiques et hydrosédimentaires. De plus, des expériences en laboratoire ont été réalisées, avec une évaluation des flux diffusifs de nutriments à 2 saisons contrastées (hiver/été) en fonction du mélange sablo-vaseux et de l’intensité de la bioturbation par la macrofaune benthique dominante de la vasière (le ver Hediste diversicolor et le bivalve Scrobicularia plana). Les expériences de terrain ont montré que l’effet saisonnier était plus prononcé que celui des bioturbateurs sur l’ensemble des paramètres biogéochimiques dans le sédiment (matière organique sédimentaire, processus et biomasse microbiens). Contrairement à la matière organique sédimentaire, principalement d’origine terrigène, la matière organique dissoute présente dans les eaux interstitielles, majoritairement d’origine autochtone, est réactive et influencée par l’activité des bioturbateurs. Ces derniers ont une influence prononcée sur l’érodabilité, avec un rôle biostabilisateur efficace pour Hediste diversicolor en été comme en hiver et un rôle déstabilisateur pour Scrobicularia plana exclusivement en été. Malgré des processus de consommations primaires très élevés et des pertes par érosion, le niveau de production primaire microphytobenthique reste par ailleurs très important sur la vasière. Les analyses réalisées ont également révélé le rôle majeur du microphytobenthos dans le réseau trophique pour H. diversicolor, S. plana et la méiofaune (analyses isotopes stables, collaboration projet SA6 SENTINELLES). Les expériences en mésocosme, complémentaires de celles réalisées sur le terrain, ont montré que l’activité de bioturbation des deux ingénieurs d’écosystème diffère quelle que soit la saison. Ainsi, le processus de transport d’eau et des composés dissous (bioirrigation) domine chez H. diversicolor, alors que l’activité de S. plana est dominée par le remaniement sédimentaire. Les flux biogéochimiques à l’interface eau-sédiment sont principalement influencés par la bioirrigation. Enfin, il a été observé que S. plana consomme très activement les biofilms microphytobenthiques et limite fortement leur capacité de développement, alors que la biomasse microphytobenthique n’est pas affectée par les activités de Hediste. Cela démontre que la consommation herbivore est totalement compensée par des effets positifs liés probablement à la bioirrigation, activée de manière générale plus de 40 fois par Hediste. Dans un second temps, ce projet proposait de modéliser la production primaire microphytobenthique en relation avec la dynamique sédimentaire et les processus biogéochimiques. Les données acquises via expériences en laboratoire et sur le terrain ont servi à développer ce modèle. Ainsi, le modèle MARS3D en version Cross-shore 2DV a été implémenté sur la vasière intertidale étudiée avec une très bonne qualité des simulations des processus hydrosédimentaires et des variations altimétriques. L’intégration de l’effet de la bioturbation et de la régulation de l’érodabilité des sédiments a permis d’améliorer encore la qualité des simulations. Un modèle de diffusion thermique a été intégré, testé et amélioré en termes d’interaction avec la composition sédimentaire. Le modèle biogéochimique BLOOM a été intégré également dans le modèle MARS3D avec une dynamique biogéochimique saisonnière bien représentée. Le modèle prend en compte le rôle des bioturbateurs sur les flux diffusifs, mais une perspective d’amélioration doit être envisagée pour mieux reproduire les flux à l’interface eau-sédiment et l’assimilation du NH4 + par le microphytobenthos en surface. Enfin, le modèle de la production primaire microphytobenthique a été implémenté dans le code MARS3D et fournit des simulations de la dynamique spatio-temporelle des biomasses microphytobenthiques intéressantes, même si les flux sont encore sous-estimés dans le modèle et les interactions avec la faune doivent encore être améliorées. Au final, les très nombreuses données issues du projet PHARESEE et le modèle associé serviront à comprendre et relier les nombreux facteurs influençant le fonctionnement des vasières et leurs rôles écosystémiques essentiels – rôle physique, de régulation sur les cycles biogéochimiques et rôle de productivité biologique et soutien au réseau trophique. Des travaux de synthèse ont été engagés en particulier pour tenter d’expliquer le haut niveau de productivité actuel du système en lien avec la bonne santé des espèces sentinelles (ingénieurs d’écosystèmes) de la macrofaune benthique
    corecore