28 research outputs found

    Identification of novel 2-(1H-Indol-1-yl)benzohydrazides CXCR4 ligands impairing breast cancer growth and motility

    Get PDF
    Stromal-derived-factor-1 (SDF-1) and the G-protein-coupled receptor CXCR4 are involved in several physiological and pathological processes including breast cancer spread and progression. Several CXCR4 antagonists have currently reached advanced development stages as potential therapeutic agents for different diseases. Results: A small series of novel CXCR4 ligands, based on a 2-(1H-indol-1-yl)-benzohydrazide scaffold, has been designed and synthesized. The interaction with CXCR4-active site was predicted by molecular docking and confirmed by whole cell-based [125I]-SDF-1 ligand competition binding assays. One of the synthesized compounds was particularly active in blocking SDF-1-induced breast cancer cell motility, proliferation and downstream signaling activation in different breast cancer cell models and coculture systems. Conclusion: The newly synthesized compounds represent suitable leads for the development of innovative therapeutic agents targeting CXCR

    Involvement of the endocannabinoid system in the physiological response to transient common carotid artery occlusion and reperfusion

    Get PDF
    Background: The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) may trigger a physiological response in an attempt to preserve tissue and function integrity. There are several candidate molecules among which the endocannabinoid system (ECS) and/or peroxisome-proliferator activated receptor-alpha (PPAR-alpha) may play a role in modulating oxidative stress and inflammation. The aims of the present study are to evaluate whether the ECS, the enzyme cyclooxygenase-2 (COX-2) and PPAR-alpha are involved during BCCAO/R in rat brain, and to identify possible markers of the ongoing BCCAO/R-induced challenge in plasma. Methods: Adult Wistar rats underwent BCCAO/R with 30 min hypoperfusion followed by 60 min reperfusion. The frontal and temporal-occipital cortices and plasma were analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) to determine concentrations of endocannabinoids (eCBs) and related molecules behaving as ligands of PPAR-alpha, and of oxidative-stress markers such as lipoperoxides, while Western Blot and immunohistochemistry were used to study protein expression of cannabinoid receptors, COX-2 and PPAR-alpha. Unpaired Student's t-test was used to evaluate statistical differences between groups. Results: The acute BCCAO/R procedure is followed by increased brain tissue levels of the eCBs 2-arachidonoylglycerol and anandamide, palmitoylethanolamide, an avid ligand of PPAR-alpha, lipoperoxides, type 1 (CB1) and type 2 (CB2) cannabinoid receptors, and COX-2, and decreased brain tissue concentrations of docosahexaenoic acid (DHA), one of the major targets of lipid peroxidation. In plasma, increased levels of anandamide and lipoperoxides were observed. Conclusions: The BCCAO/R stimulated early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The observed variations suggest that the positive modulation of the ECS and the increase of proinflammatory substances are directly correlated events. Increase of plasmatic levels of anandamide and lipoperoxides further suggests that dysregulation of these molecules may be taken as an indicator of an ongoing hypoperfusion/reperfusion challenge

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Nitric oxide regulates oestrogen-activated signalling pathways at multiple levels through cyclic GMP-dependent recruitment of insulin receptor substrate 1.

    Get PDF
    The gaseous messenger nitric oxide (NO) contributes to biological effects of oestrogen in target tissues, including reproductive organs, bone, cardiovascular and central nervous systems. Vasodilation and anti-atherosclerotic properties of NO have been shown to play a role in these effects. The possibility that NO acts also through regulation of the signal transduction cascade triggered by oestrogen, instead, has never been investigated. To study this we have used the MCF-7 human breast cancer cell line, an established model for oestrogen signalling. Exposure of these cells to 17-beta-oestradiol (E(2)) in the presence of NO gave rise to activation of signalling events additional to those triggered by E(2) alone, namely tyrosine phosphorylation of specific proteins, including the insulin receptor substrate-1, with recruitment to this adapter of the phosphatidylinositol 3'-kinase and persistent activation of Akt (protein kinase B). Active Akt, in turn, prevented E(2) from activating p42/44 extracellular signal-regulated kinases (ERK 1/2). These effects of NO, which were mediated through generation of cyclic GMP and activation of the cGMP-dependent protein kinase I, initiated in the first minutes after administration of oestrogen. The consequences, however, were long lasting, as modulation of Akt and ERK 1/2 activities by NO was responsible for inhibition of E(2)-triggered cell growth and regulation of oestrogen responsive-element dependent gene transcription. Generation of NO is stimulated by both E(2) and growth factors known to contribute to the complex network of intracellular events regulating the biological actions of oestrogen. It is conceivable, therefore, that modulation by NO of E(2) early signalling, here described for the first time, has broad significance in regulating cellular responses to the hormone
    corecore