83 research outputs found
Control of the gyration dynamics of magnetic vortices by the magnetoelastic effect
The influence of a strain-induced uniaxial magnetoelastic anisotropy on the
magnetic vortex core dynamics in microstructured magnetostrictive
CoFeB elements was investigated with time-resolved
scanning transmission x-ray microscopy. The measurements revealed a
monotonically decreasing eigenfrequency of the vortex core gyration with the
increasing magnetoelastic anisotropy, which follows closely the predictions
from micromagnetic modeling
Tomographic reconstruction of a three-dimensional magnetization vector field
Using x-ray magnetic nanotomography the internal magnetization structure within extended samples can be determined with high spatial resolution and element specificity, without the need for assumptions or prior knowledge of the magnetic properties of a sample. Here we present the details of a new algorithm for the reconstruction of a three-dimensional magnetization vector field, discussing both the mathematical description of the problem, and details of the gradient-based iterative reconstruction routine. To test the accuracy of the algorithm the method is demonstrated for a complex simulated magnetization configuration obtained from micromagnetic simulations. The reconstruction of the complex three-dimensional magnetic nanostructure, including the surroundings of magnetic singularities (or Bloch points), exhibits an excellent qualitative and quantitative agreement with the simulated magnetic structure. This method provides a robust route for the reconstruction of internal three-dimensional magnetization structures obtained from x-ray magnetic tomographic datasets, which can be acquired with either hard or soft x-rays, and can be applied to a wide variety of three-dimensional magnetic systems
Three-dimensional magnetization structures revealed with X-ray vector nanotomography
In soft ferromagnetic materials, the smoothly varying magnetization leads to the formation of fundamental patterns such as domains, vortices and domain walls<sup>1</sup>. These have been studied extensively in thin films of thicknesses up to around 200 nanometres, in which the magnetization is accessible with current transmission imaging methods that make use of electrons or soft X-rays. In thicker samples, however, in which the magnetization structure varies throughout the thickness and is intrinsically three dimensional, determining the complex magnetic structure directly still represents a challenge<sup>1, 3</sup>. We have developed hard-X-ray vector nanotomography with which to determine the three-dimensional magnetic configuration at the nanoscale within micrometre-sized samples. We imaged the structure of the magnetization within a soft magnetic pillar of diameter 5 micrometres with a spatial resolution of 100 nanometres and, within the bulk, observed a complex magnetic configuration that consists of vortices and antivortices that form cross-tie walls and vortex walls along intersecting planes. At the intersections of these structures, magnetic singularities—Bloch points—occur. These were predicted more than fifty years ago<sup>4</sup> but have so far not been directly observed. Here we image the three-dimensional magnetic structure in the vicinity of the Bloch points, which until now has been accessible only through micromagnetic simulations, and identify two possible magnetization configurations: a circulating magnetization structure<sup>5</sup> and a twisted state that appears to correspond to an ‘anti-Bloch point’. Our imaging method enables the nanoscale study of topological magnetic structures<sup>6</sup> in systems with sizes of the order of tens of micrometres. Knowledge of internal nanomagnetic textures is critical for understanding macroscopic magnetic properties and for designing bulk magnets for technological applications<sup>7</sup>
Molecular movie of ultrafast coherent rotational dynamics of OCS
Recording molecular movies on ultrafast timescales has been a longstanding goal for unravelling detailed information about molecular dynamics. Here we present the direct experimental recording of very-high-resolution and -fidelity molecular movies over more than one-and-a-half periods of the laser-induced rotational dynamics of carbonylsulfide (OCS) molecules. Utilising the combination of single quantum-state selection and an optimised two-pulse sequence to create a tailored rotational wavepacket, an unprecedented degree of field-free alignment, 〈cos2θ2D〉 = 0.96 (〈cos2θ〉 = 0.94) is achieved, exceeding the theoretical limit for single-pulse alignment. The very rich experimentally observed quantum dynamics is fully recovered by the angular probability distribution obtained from solutions of the time-dependent Schrödinger equation with parameters refined against the experiment. The populations and phases of rotational states in the retrieved time-dependent three-dimensional wavepacket rationalises the observed very high degree of alignment
Unexpected field-induced dynamics in magnetostrictive microstructured elements under isotropic strain
We investigated the influence of an isotropic strain on the magnetization dynamics of microstructured magnetostrictive Co40Fe40B20 (CoFeB) elements with time-resolved scanning transmission x-ray microscopy. We observed that the application of isotropic strain leads to changes in the behavior of the microstructured magnetostrictive elements that cannot be fully explained by the volume magnetostriction term. Therefore, our results prompt for an alternative explanation to the current models used for the interpretation of the influence of mechanical strain on the dynamical processes of magnetostrictive materials
Time- and spatially-resolved magnetization dynamics driven by spin-orbit torques
Current-induced spin-orbit torques (SOTs) represent one of the most effective
ways to manipulate the magnetization in spintronic devices. The orthogonal
torque-magnetization geometry, the strong damping, and the large domain wall
velocities inherent to materials with strong spin-orbit coupling make SOTs
especially appealing for fast switching applications in nonvolatile memory and
logic units. So far, however, the timescale and evolution of the magnetization
during the switching process have remained undetected. Here, we report the
direct observation of SOT-driven magnetization dynamics in Pt/Co/AlO dots
during current pulse injection. Time-resolved x-ray images with 25 nm spatial
and 100 ps temporal resolution reveal that switching is achieved within the
duration of a sub-ns current pulse by the fast nucleation of an inverted domain
at the edge of the dot and propagation of a tilted domain wall across the dot.
The nucleation point is deterministic and alternates between the four dot
quadrants depending on the sign of the magnetization, current, and external
field. Our measurements reveal how the magnetic symmetry is broken by the
concerted action of both damping-like and field-like SOT and show that
reproducible switching events can be obtained for over reversal
cycles
Time- and spatially-resolved magnetization dynamics driven by spin-orbit torques
Current-induced spin-orbit torques (SOTs) represent one of the most effective
ways to manipulate the magnetization in spintronic devices. The orthogonal
torque-magnetization geometry, the strong damping, and the large domain wall
velocities inherent to materials with strong spin-orbit coupling make SOTs
especially appealing for fast switching applications in nonvolatile memory and
logic units. So far, however, the timescale and evolution of the magnetization
during the switching process have remained undetected. Here, we report the
direct observation of SOT-driven magnetization dynamics in Pt/Co/AlO dots
during current pulse injection. Time-resolved x-ray images with 25 nm spatial
and 100 ps temporal resolution reveal that switching is achieved within the
duration of a sub-ns current pulse by the fast nucleation of an inverted domain
at the edge of the dot and propagation of a tilted domain wall across the dot.
The nucleation point is deterministic and alternates between the four dot
quadrants depending on the sign of the magnetization, current, and external
field. Our measurements reveal how the magnetic symmetry is broken by the
concerted action of both damping-like and field-like SOT and show that
reproducible switching events can be obtained for over reversal
cycles
- …