308 research outputs found

    A Role for Actin, Cdc1p, and Myo2p in the Inheritance of Late Golgi Elements in \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e

    Get PDF
    In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells

    Characteristics of Patients Presenting to Emergency Department for Primary Atrial Fibrillation or Flutter at an Academic Medical Center

    Get PDF
    OBJECTIVE: In the United States, atrial fibrillation (AF) accounts for over 400,000 hospitalizations annually. Emergency Department (ED) physicians have few resources available to guide AF/AFL (atrial flutter) patient triage, and the majority of these patients are subsequently admitted. Our aim is to describe the characteristics and disposition of AF/AFL patients presenting to the University of North Carolina (UNC) ED with the goal of developing a protocol to prevent unnecessary hospitalizations. METHODS: We performed a retrospective electronic medical chart review of AF/AFL patients presenting to the UNC ED over a 15-month period from January 2015 to March 2016. Demographic and ED visit variables were collected. Additionally, patients were designated as either having primary or secondary AF/AFL where primary AF/AFL patients were those in whom AF/AFL was the primary reason for ED presentation. These primary AF/AFL patients were categorized by AF symptom severity score according to the Canadian Cardiovascular Society Severity of Atrial Fibrillation (CCS-SAF) Scale. RESULTS: A total of 935 patients presented to the ED during the study period with 202 (21.5%) having primary AF/AFL. Of the primary AF/AFL patients, 189 (93.6%) had mild-moderate symptom severity (CCS-SAF ≀ 3). The majority of primary AF/AFL patients were hemodynamically stable, with a mean (SD) SBP of 123.8 (21.3), DBP of 76.6 (14.1), and ventricular rate of 93 (21.9). Patients with secondary AF/AFL were older 76 (13.1), p < 0.001 with a longer mean length of stay 6.1 (7.7), p = 0.31. Despite their mild-moderate symptom severity and hemodynamic stability, nearly 2/3 of primary AF/AFL patients were admitted. CONCLUSION: Developing a protocol to triage and discharge hemodynamically stable AF/AFL patients without severe AF/AFL symptoms to a dedicated AF/AFL clinic may help to conserve healthcare resources and potentially deliver more effective care

    Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer.

    Get PDF
    Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest, possibly because of dynamic changes in cellular signaling that drive resistance and limit drug efficacy. Using a quantitative chemoproteomics approach, we mapped kinome dynamics in response to inhibitors of this pathway and identified signaling changes that correlate with drug sensitivity. Maintenance of AURKA after drug treatment was associated with resistance in breast cancer models. Incomplete inhibition of AURKA was a common source of therapy failure, and combinations of PI3K, AKT or mTOR inhibitors with the AURKA inhibitor MLN8237 were highly synergistic and durably suppressed mTOR signaling, resulting in apoptosis and tumor regression in vivo. This signaling map identifies survival factors whose presence limits the efficacy of targeted therapies and reveals new drug combinations that may unlock the full potential of PI3K-AKT-mTOR pathway inhibitors in breast cancer

    Development of genome-specific primers for homoeologous genes in allopolyploid species: the waxy and starch synthase II genes in allohexaploid wheat (Triticum aestivum L.) as examples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In allopolypoid crops, homoeologous genes in different genomes exhibit a very high sequence similarity, especially in the coding regions of genes. This makes it difficult to design genome-specific primers to amplify individual genes from different genomes. Development of genome-specific primers for agronomically important genes in allopolypoid crops is very important and useful not only for the study of sequence diversity and association mapping of genes in natural populations, but also for the development of gene-based functional markers for marker-assisted breeding. Here we report on a useful approach for the development of genome-specific primers in allohexaploid wheat.</p> <p>Findings</p> <p>In the present study, three genome-specific primer sets for the <it>waxy </it>(<it>Wx</it>) genes and four genome-specific primer sets for the <it>starch synthase II </it>(<it>SSII</it>) genes were developed mainly from single nucleotide polymorphisms (SNPs) and/or insertions or deletions (Indels) in introns and intron-exon junctions. The size of a single PCR product ranged from 750 bp to 1657 bp. The total length of amplified PCR products by these genome-specific primer sets accounted for 72.6%-87.0% of the <it>Wx </it>genes and 59.5%-61.6% of the <it>SSII </it>genes. Five genome-specific primer sets for the <it>Wx </it>genes (one for Wx-7A, three for Wx-4A and one for Wx-7D) could distinguish the wild type wheat and partial waxy wheat lines. These genome-specific primer sets for the <it>Wx </it>and <it>SSII </it>genes produced amplifications in hexaploid wheat, cultivated durum wheat, and <it>Aegilops tauschii </it>accessions, but failed to generate amplification in the majority of wild diploid and tetraploid accessions.</p> <p>Conclusions</p> <p>For the first time, we report on the development of genome-specific primers from three homoeologous <it>Wx </it>and <it>SSII </it>genes covering the majority of the genes in allohexaploid wheat. These genome-specific primers are being used for the study of sequence diversity and association mapping of the three homoeologous <it>Wx </it>and <it>SSII </it>genes in natural populations of both hexaploid wheat and cultivated tetraploid wheat. The strategies used in this paper can be used to develop genome-specific primers for homoeologous genes in any allopolypoid species. They may be also suitable for (i) the development of gene-specific primers for duplicated paralogous genes in any diploid species, and (ii) the development of allele-specific primers at the same gene locus.</p

    Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films

    Get PDF
    Unambiguous and selective standoff (non-contact) infield detection of nitro-containingexplosives and taggants is an important goal but difficult to achieve with standard analyticaltechniques. Oxidative fluorescence quenching is emerging as a high sensitivity method fordetecting such materials but is prone to false positives—everyday items such as perfumeselicit similar responses. Here we report thin films of light-emitting dendrimers that detectvapours of explosives and taggants selectively—fluorescence quenching is not observed for arange of common interferents. Using a combination of neutron reflectometry, quartz crystalmicrobalance and photophysical measurements we show that the origin of the selectivity isprimarily electronic and not the diffusion kinetics of the analyte or its distribution in the film.The results are a major advance in the development of sensing materials for the standoffdetection of nitro-based explosive vapours, and deliver significant insights into the physicalprocesses that govern the sensing efficacy

    A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO

    Get PDF
    The first simultaneous operation of the AURIGA detector and the LIGO observatory was an opportunity to explore real data, joint analysis methods between two very different types of gravitational wave detectors: resonant bars and interferometers. This paper describes a coincident gravitational wave burst search, where data from the LIGO interferometers are cross-correlated at the time of AURIGA candidate events to identify coherent transients. The analysis pipeline is tuned with two thresholds, on the signal-to-noise ratio of AURIGA candidate events and on the significance of the cross-correlation test in LIGO. The false alarm rate is estimated by introducing time shifts between data sets and the network detection efficiency is measured with simulated signals with power in the narrower AURIGA band. In the absence of a detection, we discuss how to set an upper limit on the rate of gravitational waves and to interpret it according to different source models. Due to the short amount of analyzed data and to the high rate of non-Gaussian transients in the detectors noise at the time, the relevance of this study is methodological: this was the first joint search for gravitational wave bursts among detectors with such different spectral sensitivity and the first opportunity for the resonant and interferometric communities to unify languages and techniques in the pursuit of their common goal.Comment: 18 pages, IOP, 12 EPS figure
    • 

    corecore