4,114 research outputs found
Nano-scale analysis of titanium dioxide fingerprint-development powders
Titanium dioxide based powders are regularly used in the development of latent fingerprints on dark surfaces. For analysis of prints on adhesive tapes, the titanium dioxide is suspended in a surfactant and used in the form of a small particle reagent (SPR). Analysis of commercially available products shows varying levels of effectiveness of print development, with some powders adhering to the background as well as the print. Scanning electron microscopy (SEM) images of prints developed with different powders show a range of levels of aggregation of particles.
Analytical transmission electron microscopy (TEM) of the fingerprint powder shows TiO2 particles with a surrounding coating, tens of nanometres thick, consisting of Al and Si rich material. X ray photoelectron spectroscopy (XPS) is used to determine the composition and chemical state of the surface of the powders; with a penetration depth of approximately 10nm, this technique demonstrates differing Ti: Al: Si ratios and oxidation states between the surfaces of different powders. Levels of titanium detected with this technique demonstrate variation in the integrity of the surface coating. The thickness, integrity and composition of the Al/Si-based coating is related to the level of aggregation of TiO2 particles and efficacy of print development
Thermodynamic Entropy And The Accessible States of Some Simple Systems
Comparison of the thermodynamic entropy with Boltzmann's principle shows that
under conditions of constant volume the total number of arrangements in simple
thermodynamic systems with temperature-independent heat capacities is TC/k. A
physical interpretation of this function is given for three such systems; an
ideal monatomic gas, an ideal gas of diatomic molecules with rotational motion,
and a solid in the Dulong-Petit limit of high temperature. T1/2 emerges as a
natural measure of the number of accessible states for a single particle in one
dimension. Extension to N particles in three dimensions leads to TC/k as the
total number of possible arrangements or microstates. The different microstates
of the system are thus shown a posteriori to be equally probable, with
probability T-C/k, which implies that for the purposes of counting states the
particles of the gas are distinguishable. The most probable energy state of the
system is determined by the degeneracy of the microstates.Comment: 9 pages, 1 figur
Direct evidence for the magnetic ordering of Nd ions in NdFeAsO by high resolution inelastic neutron scattering
We investigated the low energy excitations in the parent compound NdFeAsO of
the Fe-pnictide superconductor in the eV range by a back scattering
neutron spectrometer. The energy scans on a powder NdFeAsO sample revealed
inelastic peaks at E = 1.600 eV at T = 0.055 K on both energy
gain and energy loss sides. The inelastic peaks move gradually towards lower
energy with increasing temperature and finally merge with the elastic peak at
about 6 K. We interpret the inelastic peaks to be due to the transition between
hyperfine-split nuclear level of the Nd and Nd isotopes with
spin . The hyperfine field is produced by the ordering of the
electronic magnetic moment of Nd at low temperature and thus the present
investigation gives direct evidence of the ordering of the Nd magnetic
sublattice of NdFeAsO at low temperature
Extravehicular activities limitations study. Volume 1: Physiological limitations to extravehicular activity in space
This report contains the results of a comprehensive literature search on physiological aspects of EVA. Specifically, the topics covered are: (1) Oxygen levels; (2) Optimum EVA work; (3) Food and Water; (4) Carbon dioxide levels; (5) Repetitive decompressions; (6) Thermal, and (7) Urine collection. The literature was assessed on each of these topics, followed by statements on conclusions and recommended future research needs
A Role for Actin, Cdc1p, and Myo2p in the Inheritance of Late Golgi Elements in \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e
In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells
High cooperativity coupling of electron-spin ensembles to superconducting cavities
Electron spins in solids are promising candidates for quantum memories for
superconducting qubits because they can have long coherence times, large
collective couplings, and many quantum bits can be encoded into the spin-waves
of a single ensemble. We demonstrate the coupling of electron spin ensembles to
a superconducting transmission-line resonator at coupling strengths greatly
exceeding the cavity decay rate and comparable to spin linewidth. We also use
the enhanced coupling afforded by the small cross-section of the transmission
line to perform broadband spectroscopy of ruby at millikelvin temperatures at
low powers. In addition, we observe hyperfine structure in diamond P1 centers
and time domain saturation-relaxation of the spins.Comment: 4pgs, 4 figure
On the upper bound of the electronic kinetic energy in terms of density functionals
We propose a simple density functional expression for the upper bound of the
kinetic energy for electronic systems. Such a functional is valid in the limit
of slowly varying density, its validity outside this regime is discussed by
making a comparison with upper bounds obtained in previous work. The advantages
of the functional proposed for applications to realistic systems is briefly
discussed.Comment: 10 pages, no figure
An analytic expression for the electronic correlation term of the kinetic functional
We propose an analytic formula for the non-local Fisher information
functional, or electronic kinetic correlation term, appearing in the expression
of the kinetic density functional. Such an explicit formula is constructed on
the basis of well-founded physical arguments and a rigorous mathematical
prescription
Spin waves and spin-state transitions in a ruthenate high-temperature antiferromagnet
Ruthenium compounds play prominent roles in materials research ranging from
oxide electronics to catalysis, and serve as a platform for fundamental
concepts such as spin-triplet superconductivity, Kitaev spin-liquids, and
solid-state analogues of the Higgs mode in particle physics. However, basic
questions about the electronic structure of ruthenates remain unanswered,
because several key parameters (including the Hund's-rule, spin-orbit, and
exchange interactions) are comparable in magnitude, and their interplay is
poorly understood - partly due to difficulties in synthesizing sizable single
crystals for spectroscopic experiments. Here we introduce a resonant inelastic
x-ray scattering (RIXS) technique capable of probing collective modes in
microcrystals of -electron materials. We present a comprehensive set of
data on spin waves and spin-state transitions in the honeycomb antiferromagnet
SrRuO, which possesses an unusually high N\'eel temperature. The
new RIXS method provides fresh insight into the unconventional magnetism of
SrRuO, and enables momentum-resolved spectroscopy of a large class
of transition-metal compounds.Comment: The original submitted version of the published manuscript.
https://www.nature.com/articles/s41563-019-0327-
- …