4,116 research outputs found

    Nano-scale analysis of titanium dioxide fingerprint-development powders

    Get PDF
    Titanium dioxide based powders are regularly used in the development of latent fingerprints on dark surfaces. For analysis of prints on adhesive tapes, the titanium dioxide is suspended in a surfactant and used in the form of a small particle reagent (SPR). Analysis of commercially available products shows varying levels of effectiveness of print development, with some powders adhering to the background as well as the print. Scanning electron microscopy (SEM) images of prints developed with different powders show a range of levels of aggregation of particles. Analytical transmission electron microscopy (TEM) of the fingerprint powder shows TiO2 particles with a surrounding coating, tens of nanometres thick, consisting of Al and Si rich material. X ray photoelectron spectroscopy (XPS) is used to determine the composition and chemical state of the surface of the powders; with a penetration depth of approximately 10nm, this technique demonstrates differing Ti: Al: Si ratios and oxidation states between the surfaces of different powders. Levels of titanium detected with this technique demonstrate variation in the integrity of the surface coating. The thickness, integrity and composition of the Al/Si-based coating is related to the level of aggregation of TiO2 particles and efficacy of print development

    Thermodynamic Entropy And The Accessible States of Some Simple Systems

    Full text link
    Comparison of the thermodynamic entropy with Boltzmann's principle shows that under conditions of constant volume the total number of arrangements in simple thermodynamic systems with temperature-independent heat capacities is TC/k. A physical interpretation of this function is given for three such systems; an ideal monatomic gas, an ideal gas of diatomic molecules with rotational motion, and a solid in the Dulong-Petit limit of high temperature. T1/2 emerges as a natural measure of the number of accessible states for a single particle in one dimension. Extension to N particles in three dimensions leads to TC/k as the total number of possible arrangements or microstates. The different microstates of the system are thus shown a posteriori to be equally probable, with probability T-C/k, which implies that for the purposes of counting states the particles of the gas are distinguishable. The most probable energy state of the system is determined by the degeneracy of the microstates.Comment: 9 pages, 1 figur

    Direct evidence for the magnetic ordering of Nd ions in NdFeAsO by high resolution inelastic neutron scattering

    Full text link
    We investigated the low energy excitations in the parent compound NdFeAsO of the Fe-pnictide superconductor in the μ\mueV range by a back scattering neutron spectrometer. The energy scans on a powder NdFeAsO sample revealed inelastic peaks at E = 1.600 ±0.003μ \pm 0.003 \mueV at T = 0.055 K on both energy gain and energy loss sides. The inelastic peaks move gradually towards lower energy with increasing temperature and finally merge with the elastic peak at about 6 K. We interpret the inelastic peaks to be due to the transition between hyperfine-split nuclear level of the 143^{143}Nd and 145^{145}Nd isotopes with spin I=7/2I = 7/2. The hyperfine field is produced by the ordering of the electronic magnetic moment of Nd at low temperature and thus the present investigation gives direct evidence of the ordering of the Nd magnetic sublattice of NdFeAsO at low temperature

    Extravehicular activities limitations study. Volume 1: Physiological limitations to extravehicular activity in space

    Get PDF
    This report contains the results of a comprehensive literature search on physiological aspects of EVA. Specifically, the topics covered are: (1) Oxygen levels; (2) Optimum EVA work; (3) Food and Water; (4) Carbon dioxide levels; (5) Repetitive decompressions; (6) Thermal, and (7) Urine collection. The literature was assessed on each of these topics, followed by statements on conclusions and recommended future research needs

    A Role for Actin, Cdc1p, and Myo2p in the Inheritance of Late Golgi Elements in \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e

    Get PDF
    In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells

    High cooperativity coupling of electron-spin ensembles to superconducting cavities

    Full text link
    Electron spins in solids are promising candidates for quantum memories for superconducting qubits because they can have long coherence times, large collective couplings, and many quantum bits can be encoded into the spin-waves of a single ensemble. We demonstrate the coupling of electron spin ensembles to a superconducting transmission-line resonator at coupling strengths greatly exceeding the cavity decay rate and comparable to spin linewidth. We also use the enhanced coupling afforded by the small cross-section of the transmission line to perform broadband spectroscopy of ruby at millikelvin temperatures at low powers. In addition, we observe hyperfine structure in diamond P1 centers and time domain saturation-relaxation of the spins.Comment: 4pgs, 4 figure

    On the upper bound of the electronic kinetic energy in terms of density functionals

    Full text link
    We propose a simple density functional expression for the upper bound of the kinetic energy for electronic systems. Such a functional is valid in the limit of slowly varying density, its validity outside this regime is discussed by making a comparison with upper bounds obtained in previous work. The advantages of the functional proposed for applications to realistic systems is briefly discussed.Comment: 10 pages, no figure

    An analytic expression for the electronic correlation term of the kinetic functional

    Full text link
    We propose an analytic formula for the non-local Fisher information functional, or electronic kinetic correlation term, appearing in the expression of the kinetic density functional. Such an explicit formula is constructed on the basis of well-founded physical arguments and a rigorous mathematical prescription

    Spin waves and spin-state transitions in a ruthenate high-temperature antiferromagnet

    Full text link
    Ruthenium compounds play prominent roles in materials research ranging from oxide electronics to catalysis, and serve as a platform for fundamental concepts such as spin-triplet superconductivity, Kitaev spin-liquids, and solid-state analogues of the Higgs mode in particle physics. However, basic questions about the electronic structure of ruthenates remain unanswered, because several key parameters (including the Hund's-rule, spin-orbit, and exchange interactions) are comparable in magnitude, and their interplay is poorly understood - partly due to difficulties in synthesizing sizable single crystals for spectroscopic experiments. Here we introduce a resonant inelastic x-ray scattering (RIXS) technique capable of probing collective modes in microcrystals of 4d4d-electron materials. We present a comprehensive set of data on spin waves and spin-state transitions in the honeycomb antiferromagnet SrRu2_{2}O6_{6}, which possesses an unusually high N\'eel temperature. The new RIXS method provides fresh insight into the unconventional magnetism of SrRu2_{2}O6_{6}, and enables momentum-resolved spectroscopy of a large class of 4d4d transition-metal compounds.Comment: The original submitted version of the published manuscript. https://www.nature.com/articles/s41563-019-0327-
    corecore