64 research outputs found

    Basement and Regional Structure Along Strike of the Queen Charlotte Fault in the Context of Modern and Historical Earthquake Ruptures

    Get PDF
    The Queen Charlotte fault (QCF) is a dextral transform system located offshore of southeastern Alaska and western Canada, accommodating similar to 4.4 cm/yr of relative motion between the Pacific and North American plates. Oblique convergence along the fault increases southward, and how this convergence is accommodated is still debated. Using seismic reflection data, we interpret offshore basement structure, faulting, and stratigraphy to provide a geological context for two recent earthquakes, an M-w 7.5 strike-slip event near Craig, Alaska, and an M-w 7.8 thrust event near Haida Gwaii, Canada. We map downwarped Pacific oceanic crust near 54 degrees N, between the two rupture zones. Observed downwarping decreases north and south of 54 degrees N, parallel to the strike of the QCF. Bending of the Pacific plate here may have initiated with increased convergence rates due to a plate motion change at similar to 6 Ma. Tectonic reconstruction implies convergence-driven Pacific plate flexure, beginning at 6 Ma south of a 10 degrees bend the QCF (which is currently at 53.2 degrees N) and lasting until the plate translated past the bend by similar to 2 Ma. Normal-faulted approximately late Miocene sediment above the deep flexural depression at 54 degrees N, topped by relatively undeformed Pleistocene and younger sediment, supports this model. Aftershocks of the Haida Gwaii event indicate a normal-faulting stress regime, suggesting present-day plate flexure and underthrusting, which is also consistent with reconstruction of past conditions. We thus favor a Pacific plate underthrusting model to initiate flexure and accommodation space for sediment loading. In addition, mapped structures indicate two possible fault segment boundaries along the QCF at 53.2 degrees N and at 56 degrees N.USGS Earthquake Hazards External Grants ProgramNational Earthquake Hazards Reduction ProgramUTIG Ewing/Worzel FellowshipInstitute for Geophysic

    Strike-slip Enables Subduction Initiation beneath a Failed Rift: New Seismic Constraints from Puysegur Margin, New Zealand

    Get PDF
    Subduction initiation often takes advantage of previously weakened lithosphere and may preferentially nucleate along pre-existing plate boundaries. To evaluate how past tectonic regimes and inherited lithospheric structure might lead to self-sustaining subduction, we present an analysis of the Puysegur Trench, a young subduction zone with a rapidly evolving tectonic history. The Puysegur margin, south of New Zealand, has experienced a transformation from rifting to seafloor spreading to strike-slip, and most recently to incipient subduction, all in the last ~45 million years. Here we present deep-penetrating multichannel reflection (MCS) and ocean-bottom seismometer (OBS) tomographic images to document crustal structures along the margin. Our images reveal that the overriding Pacific Plate beneath the Solander Basin contains stretched continental crust with magmatic intrusions, which formed from Eocene-Oligocene rifting between the Campbell and Challenger plateaus. Rifting was more advanced to the south, yet never proceeded to breakup and seafloor spreading in the Solander Basin as previously thought. Subsequent strike-slip deformation translated continental crust northward causing an oblique collisional zone, with trailing ~10 Myr old oceanic lithosphere. Incipient subduction transpired as oceanic lithosphere from the south forcibly underthrust the continent-collision zone. We suggest that subduction initiation at the Puysegur Trench was assisted by inherited buoyancy contrasts and structural weaknesses that were imprinted into the lithosphere during earlier phases of continental rifting and strike-slip along the plate boundary. The Puysegur margin demonstrates that forced nucleation along a strike-slip boundary is a viable subduction initiation scenario and should be considered throughout Earth's history

    Strike-Slip Enables Subduction Initiation Beneath a Failed Rift: New Seismic Constraints From Puysegur Margin, New Zealand

    Get PDF
    Subduction initiation often takes advantage of previously weakened lithosphere and may preferentially nucleate along pre‐existing plate boundaries. To evaluate how past tectonic regimes and inherited lithospheric structure might lead to self‐sustaining subduction, we present an analysis of the Puysegur Trench, a young subduction zone with a rapidly evolving tectonic history. The Puysegur margin, south of New Zealand, has experienced a transformation from rifting to seafloor spreading to strike‐slip, and most recently to incipient subduction, all in the last ∼45 million years. Here we present deep‐penetrating multichannel reflection and ocean‐bottom seismometer tomographic images to document crustal structures along the margin. Our images reveal that the overriding Pacific Plate beneath the Solander Basin contains stretched continental crust with magmatic intrusions, which formed from Eocene‐Oligocene rifting between the Campbell and Challenger plateaus. Rifting was more advanced to the south, yet never proceeded to breakup and seafloor spreading in the Solander Basin as previously thought. Subsequent strike‐slip deformation translated continental crust northward causing an oblique collisional zone, with trailing ∼10 Myr old oceanic lithosphere. Incipient subduction transpired as oceanic lithosphere from the south forcibly underthrust the continent‐collision zone. We suggest that subduction initiation at the Puysegur Trench was assisted by inherited buoyancy contrasts and structural weaknesses that were imprinted into the lithosphere during earlier phases of continental rifting and strike‐slip along the plate boundary. The Puysegur margin demonstrates that forced nucleation along a strike‐slip boundary is a viable subduction initiation scenario and should be considered throughout Earth's history

    Incipient subduction at the contact with stretched continental crust: The Puysegur Trench

    Get PDF
    A seismic Benioff zone and plate kinematics show Puysegur Trench south of New Zealand transitioning to subduction. Because the local structure and its influence on subduction initiation is poorly understood, we conducted a seismic survey with ocean bottom seismometers and multichannel seismic profiles. Our early results show that the overriding Pacific Plate beneath the Solander Basin is composed of block-faulted and thinned continental crust, and the inner trench wall of northern Puysegur Ridge is composed of folded and faulted sediment. The megathrust interface has been imaged and shows ∼500 m of downgoing, undisturbed sediments. Combining plate kinematic history with seismic velocity-inferred density, we show that the density difference across the plate boundary changed as oblique strike-slip plate motion juxtaposed dense oceanic crust with thinned continental crust. The density difference rapidly increased 18 to 15 Ma, coincident with subduction initiation, suggesting that compositional differences have a large influence on subduction initiation

    Ocean Drilling Perspectives on Meteorite Impacts

    Get PDF
    Extraterrestrial impacts that reshape the surfaces of rocky bodies are ubiquitous in the solar system. On early Earth, impact structures may have nurtured the evolution of life. More recently, a large meteorite impact off the Yucatán Peninsula in Mexico at the end of the Cretaceous caused the disappearance of 75% of species known from the fossil record, including non-avian dinosaurs, and cleared the way for the dominance of mammals and the eventual evolution of humans. Understanding the fundamental processes associated with impact events is critical to understanding the history of life on Earth, and the potential for life in our solar system and beyond. Scientific ocean drilling has generated a large amount of unique data on impact pro- cesses. In particular, the Yucatán Chicxulub impact is the single largest and most sig- nificant impact event that can be studied by sampling in modern ocean basins, and marine sediment cores have been instrumental in quantifying its environmental, cli- matological, and biological effects. Drilling in the Chicxulub crater has significantly advanced our understanding of fundamental impact processes, notably the formation of peak rings in large impact craters, but these data have also raised new questions to be addressed with future drilling. Within the Chicxulub crater, the nature and thickness of the melt sheet in the central basin is unknown, and an expanded Paleocene hemipelagic section would provide insights to both the recovery of life and the climatic changes that followed the impact. Globally, new cores collected from today’s central Pacific could directly sample the downrange ejecta of this northeast-southwest trending impact. Extraterrestrial impacts have been controversially suggested as primary drivers for many important paleoclimatic and environmental events throughout Earth history. However, marine sediment archives collected via scientific ocean drilling and geo- chemical proxies (e.g., osmium isotopes) provide a long-term archive of major impact events in recent Earth history and show that, other than the end-Cretaceous, impacts do not appear to drive significant environmental changes

    Sphene Emotional: How Titanite Was Shocked When the Dinosaurs Died

    Get PDF
    Accessory mineral geochronometers such as zircon, monazite, baddeleyite, and xenotime are increasingly being recognized for their ability to preserve diagnostic microstructural evidence of hypervelocity processes. However, little is known about the response of titanite to shock metamorphism, even though it is a widespread accessory phase and U-Pb geochronometer. Here we report two new mechanical twin modes in titanite within shocked granitoids from the Chicxulub impact structure, Mexico. Titanite grains in the newly acquired International Ocean Discovery Program Site expedition 364 M0077A core preserve multiple sets of polysynthetic twins, most commonly with composition planes (K1), = ~{111}, and shear direction (1) = , and less commonly with the mode K1 = {130}, 1 = ~. In some grains, {130} deformation bands have formed concurrently with shock twins, indicating dislocation glide with Burgers vector b = [341] can be active at shock conditions. Twinning of titanite in these modes, the presence of planar deformation features in shocked quartz, and lack of diagnostic shock microstructures in zircon in the same samples highlights the utility of titanite as a shock indicator for a shock pressure range between ~12 and ~17 GPa. Given the challenges of identifying ancient impact evidence on Earth and other bodies, microstructural analysis of titanite is here demonstrated to be a new avenue for recognizing impact deformation in materials where other impact evidence may be erased, altered, or did not manifest due to low shock pressure

    Ocean resurge-induced impact melt dynamics on the peak-ring of the Chicxulub impact structure, Mexico

    Get PDF
    Core from Hole M0077 from IODP/ICDP Expedition 364 provides unprecedented evidence for the physical processes in effect during the interaction of impact melt with rock-debris-laden seawater, following a large meteorite impact into waters of the Yucatán shelf. Evidence for this interaction is based on petrographic, microstructural and chemical examination of the 46.37-m-thick impact melt rock sequence, which overlies shocked granitoid target rock of the peak ring of the Chicxulub impact structure. The melt rock sequence consists of two visually distinct phases, one is black and the other is green in colour. The black phase is aphanitic and trachyandesitic in composition and similar to melt rock from other sites within the impact structure. The green phase consists chiefly of clay minerals and sparitic calcite, which likely formed from a solidified water–rock debris mixture under hydrothermal conditions. We suggest that the layering and internal structure of the melt rock sequence resulted from a single process, i.e., violent contact of initially superheated silicate impact melt with the ocean resurge-induced water–rock mixture overriding the impact melt. Differences in density, temperature, viscosity, and velocity of this mixture and impact melt triggered Kelvin–Helmholtz and Rayleigh–Taylor instabilities at their phase boundary. As a consequence, shearing at the boundary perturbed and, thus, mingled both immiscible phases, and was accompanied by phreatomagmatic processes. These processes led to the brecciation at the top of the impact melt rock sequence. Quenching of this breccia by the seawater prevented reworking of the solidified breccia layers upon subsequent deposition of suevite. Solid-state deformation, notably in the uppermost brecciated impact melt rock layers, attests to long-term gravitational settling of the peak ring

    Probing the hydrothermal system of the Chicxulub impact crater

    Get PDF
    The ~180-km-diameter Chicxulub peak-ring crater and ~240-km multiring basin, produced by the impact that terminated the Cretaceous, is the largest remaining intact impact basin on Earth. International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) Expedition 364 drilled to a depth of 1335 m below the sea floor into the peak ring, providing a unique opportunity to study the thermal and chemical modification of Earth’s crust caused by the impact. The recovered core shows the crater hosted a spatially extensive hydrothermal system that chemically and mineralogically modified ~1.4 × 105 km3 of Earth’s crust, a volume more than nine times that of the Yellowstone Caldera system. Initially, high temperatures of 300° to 400°C and an independent geomagnetic polarity clock indicate the hydrothermal system was long lived, in excess of 106 years

    Globally distributed iridium layer preserved within the Chicxulub impact structure

    Get PDF
    The Cretaceous-Paleogene (K-Pg) mass extinction is marked globally by elevated concentrations of iridium, emplaced by a hypervelocity impact event 66 million years ago. Here, we report new data from four independent laboratories that reveal a positive iridium anomaly within the peak-ring sequence of the Chicxulub impact structure, in drill core recovered by IODP-ICDP Expedition 364. The highest concentration of ultrafine meteoritic matter occurs in the post-impact sediments that cover the crater peak ring, just below the lowermost Danian pelagic limestone. Within years to decades after the impact event, this part of the Chicxulub impact basin returned to a relatively low-energy depositional environment, recording in unprecedented detail the recovery of life during the succeeding millennia. The iridium layer provides a key temporal horizon precisely linking Chicxulub to K-Pg boundary sections worldwide
    corecore