172 research outputs found

    High-Resolution Near Infrared Spectroscopy of HD 100546: I. Analysis of Asymmetric Ro-Vibrational OH Emission Lines

    Get PDF
    We present observations of ro-vibrational OH and CO emission from the Herbig Be star HD 100546. The emission from both molecules arises from the inner region of the disk extending from approximately 13 AU from the central star. The velocity profiles of the OH lines are narrower than the velocity profile of the [O I] 6300 Angstrom line indicating that the OH in the disk is not cospatial with the O I. This suggests that the inner optically thin region of the disk is largely devoid of molecular gas. Unlike the ro-vibrational CO emission lines, the OH lines are highly asymmetric. We show that the average CO and average OH line profiles can be fit with a model of a disk comprised of an eccentric inner wall and a circular outer disk. In this model, the vast majority of the OH flux (75%) originates from the inner wall, while the vast majority of the CO flux (65%) originates on the surface of the disk at radii greater than 13 AU. Eccentric inner disks are predicted by hydrodynamic simulations of circumstellar disks containing an embedded giant planet. We discuss the implications of such a disk geometry in light of models of planet disk tidal interactions and propose alternate explanations for the origin of the asymmetry

    Rapid Depletion of Target Proteins Allows Identification of Coincident Physiological Responses

    Get PDF
    Targeted protein degradation is a powerful tool that can be used to create unique physiologies depleted of important factors. Current strategies involve modifying a gene of interest such that a degradation peptide is added to an expressed target protein and then conditionally activating proteolysis, either by expressing adapters, unmasking cryptic recognition determinants, or regulating protease affinities using small molecules. For each target, substantial optimization may be required to achieve a practical depletion, in that the target remains present at a normal level prior to induction and is then rapidly depleted to levels low enough to manifest a physiological response. Here, we describe a simplified targeted degradation system that rapidly depletes targets and that can be applied to a wide variety of proteins without optimizing target protease affinities. The depletion of the target is rapid enough that a primary physiological response manifests that is related to the function of the target. Using ribosomal protein Si as an example, we show that the rapid depletion of this essential translation factor invokes concomitant changes to the levels of several mRNAs, even before appreciable cell division has occurred

    Predictors of Limb Fat Gain in HIV Positive Patients Following a Change to Tenofovir-Emtricitabine or Abacavir-Lamivudine

    Get PDF
    Background Antiretroviral treatment (cART) in HIV causes lipoatrophy. We examined predictors of anthropometric outcomes over 96 weeks in HIV-infected, lipoatrophic adults receiving stable cART randomised to tenofovir-emtricitabine (TDF-FTC) or abacavir-lamivudine (ABC-3TC) fixed dose combinations. Methodology/Principal Findings The STEAL study was a prospective trial of virologically suppressed participants randomised to either TDF-FTC (n = 178) or ABC-3TC (n = 179). Anthropometric assessment was conducted at baseline, weeks 48 and 96. The analysis population included those with baseline and week 96 data remaining on randomised therapy. Distribution of limb fat change was divided into four categories (≤0%, \u3e0-10%, \u3e10-20%, \u3e20%). Baseline characteristics [demographics, medical history, metabolic and cardiovascular biomarkers] were assessed as potential predictors of change in percent subcutaneous limb fat using linear regression. 303 participants (85% of STEAL population) were included. Baseline characteristics were: mean (±SD) age 45 (±8) years; thymidine analogue nucleoside reverse transcriptase inhibitor (tNRTI) duration 4 (±3) years; limb fat 5.4 (±3.0)kg; body mass index 24.7 (±3.5) kg/m2. Mean (SD) limb fat gain to week 48 and 96 was 7.6% (±22.4) and 13.2% (±27.3), respectively, with no significant difference between groups. 51.5% of all participants had \u3e10% gain in limb fat. Predictors of greater limb fat gain at week 96 were baseline tNRTI (10.3, p = 0.001), glucose \u3e6 mmol/L (16.1, p = 0.04), higher interleukin 6 (IL-6) (2.8, p = 0.004) and lower baseline limb fat (3.8-6.4 kg - 11.2; \u3e6.4 kg - 15.7, p trend\u3c0.001). Conclusions/Significance Modest peripheral fat gain occurred with both TDF-FTC and ABC-3TC. Baseline factors associated with more severe lipodystrophy (lipoatrophy, baseline tNRTI, raised IL6, and glucose) predicted greater limb fat recovery at 96 weeks

    Insights into the Dynamics Between Viruses and their Hosts in a Hot Spring Microbial Mat

    Get PDF
    © 2020, The Author(s). Our current knowledge of host–virus interactions in biofilms is limited to computational predictions based on laboratory experiments with a small number of cultured bacteria. However, natural biofilms are diverse and chiefly composed of uncultured bacteria and archaea with no viral infection patterns and lifestyle predictions described to date. Herein, we predict the first DNA sequence-based host–virus interactions in a natural biofilm. Using single-cell genomics and metagenomics applied to a hot spring mat of the Cone Pool in Mono County, California, we provide insights into virus–host range, lifestyle and distribution across different mat layers. Thirty-four out of 130 single cells contained at least one viral contig (26%), which, together with the metagenome-assembled genomes, resulted in detection of 59 viruses linked to 34 host species. Analysis of single-cell amplification kinetics revealed a lack of active viral replication on the single-cell level. These findings were further supported by mapping metagenomic reads from different mat layers to the obtained host–virus pairs, which indicated a low copy number of viral genomes compared to their hosts. Lastly, the metagenomic data revealed high layer specificity of viruses, suggesting limited diffusion to other mat layers. Taken together, these observations indicate that in low mobility environments with high microbial abundance, lysogeny is the predominant viral lifestyle, in line with the previously proposed “Piggyback-the-Winner” theory

    The cometary composition of a protoplanetary disk as revealed by complex cyanides

    Full text link
    Observations of comets and asteroids show that the Solar Nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface, seeding its early chemistry. Unlike asteroids, comets preserve a nearly pristine record of the Solar Nebula composition. The presence of cyanides in comets, including 0.01% of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can be readily explained by a combination of gas-phase chemistry to form e.g. HCN and an active ice-phase chemistry on grain surfaces that advances complexity[3]. Simple volatiles, including water and HCN, have been detected previously in Solar Nebula analogues - protoplanetary disks around young stars - indicating that they survive disk formation or are reformed in situ. It has been hitherto unclear whether the same holds for more complex organic molecules outside of the Solar Nebula, since recent observations show a dramatic change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks[8]. Here we report the detection of CH3CN (and HCN and HC3N) in the protoplanetary disk around the young star MWC 480. We find abundance ratios of these N-bearing organics in the gas-phase similar to comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of the Solar Nebula was not unique.Comment: Definitive version of the manuscript is published in Nature, 520, 7546, 198, 2015. This is the author's versio

    The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology

    Get PDF
    Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury

    Transient Pulses from Exploding Primordial Black Holes as a Signature of an Extra Dimension

    Full text link
    An evaporating black hole in the presence of an extra spatial dimension would undergo an explosive phase of evaporation. We show that such an event, involving a primordial black hole, can produce a detectable, distinguishable electromagnetic pulse, signaling the existence of an extra dimension of size L10181020L\sim10^{-18}-10^{-20} m. We derive a generic relationship between the Lorentz factor of a pulse-producing "fireball" and the TeV energy scale. For an ordinary toroidally compactified extra dimension, transient radio-pulse searches probe the electroweak energy scale (\sim0.1 TeV), enabling comparison with the Large Hadron Collider.Comment: 11 pages, 1 figure; references added; typos corrected; clarifying remarks added near the end of section

    The ACTTION-APS-AAPM Pain Taxonomy (AAAPT) Multidimensional Approach to Classifying Acute Pain Conditions.

    Get PDF
    Objective: With the increasing societal awareness of the prevalence and impact of acute pain, there is a need to develop an acute pain classification system that both reflects contemporary mechanistic insights and helps guide future research and treatment. Existing classifications of acute pain conditions are limiting, with a predominant focus on the sensory experience (e.g., pain intensity) and pharmacologic consumption. Consequently, there is a need to more broadly characterize and classify the multidimensional experience of acute pain. Setting: Consensus report following expert panel involving the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION), American Pain Society (APS), and American Academy of Pain Medicine (AAPM). Methods: As a complement to a taxonomy recently developed for chronic pain, the ACTTION public-private partnership with the US Food and Drug Administration, the APS, and the AAPM convened a consensus meeting of experts to develop an acute pain taxonomy using prevailing evidence. Key issues pertaining to the distinct nature of acute pain are presented followed by the agreed-upon taxonomy. The ACTTION-APS-AAPM Acute Pain Taxonomy will include the following dimensions: 1) core criteria, 2) common features, 3) modulating factors, 4) impact/functional consequences, and 5) putative pathophysiologic pain mechanisms. Future efforts will consist of working groups utilizing this taxonomy to develop diagnostic criteria for a comprehensive set of acute pain conditions. Perspective: The ACTTION-APS-AAPM Acute Pain Taxonomy (AAAPT) is a multidimensional acute pain classification system designed to classify acute pain along the following dimensions: 1) core criteria, 2) common features, 3) modulating factors, 4) impact/functional consequences, and 5) putative pathophysiologic pain mechanisms. Conclusions: Significant numbers of patients still suffer from significant acute pain, despite the advent of modern multimodal analgesic strategies. Mismanaged acute pain has a broad societal impact as significant numbers of patients may progress to suffer from chronic pain. An acute pain taxonomy provides a much-needed standardization of clinical diagnostic criteria, which benefits clinical care, research, education, and public policy. For the purposes of the present taxonomy, acute pain is considered to last up to seven days, with prolongation to 30 days being common. The current understanding of acute pain mechanisms poorly differentiates between acute and chronic pain and is often insufficient to distinguish among many types of acute pain conditions. Given the usefulness of the AAPT multidimensional framework, the AAAPT undertook a similar approach to organizing various acute pain conditions
    corecore