16 research outputs found

    Plasma cortisol linked gene networks in hepatic and adipose tissues implicate corticosteroid binding globulin in modulating tissue glucocorticoid action and cardiovascular risk

    Get PDF
    Genome-wide association meta-analysis (GWAMA) by the Cortisol Network (CORNET) consortium identified genetic variants spanning the SERPINA6/SERPINA1 locus on chromosome 14 associated with morning plasma cortisol, cardiovascular disease (CVD), and SERPINA6 mRNA expression encoding corticosteroid-binding globulin (CBG) in the liver. These and other findings indicate that higher plasma cortisol levels are causally associated with CVD; however, the mechanisms by which variations in CBG lead to CVD are undetermined. Using genomic and transcriptomic data from The Stockholm Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET) study, we identified plasma cortisol-linked single-nucleotide polymorphisms (SNPs) that are trans-associated with genes from seven different vascular and metabolic tissues, finding the highest representation of trans-genes in the liver, subcutaneous fat, and visceral abdominal fat, [false discovery rate (FDR) = 15%]. We identified a subset of cortisol-associated trans-genes that are putatively regulated by the glucocorticoid receptor (GR), the primary transcription factor activated by cortisol. Using causal inference, we identified GR-regulated trans-genes that are responsible for the regulation of tissue-specific gene networks. Cis-expression Quantitative Trait Loci (eQTLs) were used as genetic instruments for identification of pairwise causal relationships from which gene networks could be reconstructed. Gene networks were identified in the liver, subcutaneous fat, and visceral abdominal fat, including a high confidence gene network specific to subcutaneous adipose (FDR = 10%) under the regulation of the interferon regulatory transcription factor, IRF2. These data identify a plausible pathway through which variation in the liver CBG production perturbs cortisol-regulated gene networks in peripheral tissues and thereby promote CVD.publishedVersio

    eQTLs as causal instruments for the reconstruction of hormone linked gene networks

    Get PDF
    Hormones act within in highly dynamic systems and much of the phenotypic response to variation in hormone levels is mediated by changes in gene expression. The increase in the number and power of large genetic association studies has led to the identification of hormone linked genetic variants. However, the biological mechanisms underpinning the majority of these loci are poorly understood. The advent of affordable, high throughput next generation sequencing and readily available transcriptomic databases has shown that many of these genetic variants also associate with variation in gene expression levels as expression Quantitative Trait Loci (eQTLs). In addition to further dissecting complex genetic variation, eQTLs have been applied as tools for causal inference. Many hormone networks are driven by transcription factors, and many of these genes can be linked to eQTLs. In this mini-review, we demonstrate how causal inference and gene networks can be used to describe the impact of hormone linked genetic variation upon the transcriptome within an endocrinology context.publishedVersio

    Cortisol responsive gene networks in cardiovascular disease

    Get PDF
    Increased plasma cortisol levels are associated with Cardiovascular Disease (CVD) and CVD risk factors, however the tissue specific mechanisms underpinning this process are poorly understood. A genome wide meta-analysis by the CORtisol NETwork (CORNET) consortium identified genetic variants, spanning the SERPINA6/SERPINA1 locus on chromosome 14, associated with morning plasma cortisol and shown to be causal for ischaemic heart disease. SERPINA6 encodes Corticosteroid Binding Globulin (CBG), responsible for binding most cortisol in blood and putatively mediating delivery of cortisol to target tissues. This thesis addresses the hypothesis that genetic variants in SERPINA6 influence CBG expression in liver and cortisol delivery to extra-hepatic tissues, responsible for mediating cortisol-regulated gene expression. The Stockholm Tartu Atherosclerosis Reverse Networks Engineering Task study (STARNET) provides RNA sequencing data for 7 vascular and metabolic tissues from 600 genotyped individuals (mean age 65.8, 70.3% male) undergoing coronary artery bypass grafting. We have identified 21 Single Nucleotide Polymorphisms (SNPs) associated with both variation for plasma cortisol at genome wide significance in CORNET (p ≤ 5×10-8) and with SERPINA6 gene expression in STARNET-liver (q ≤ 0.05) as cis-expression Quantitative Trait Loci (eQTLs). We go on to describe the extra-hepatic consequences of genetic variation for plasma cortisol by linking SNPs associated with plasma cortisol to genes expressed in trans across STARNET tissues, finding the highest representation of trans-genes in liver, subcutaneous and visceral abdominal adipose tissue (FDR = 15%). Through the use of published evidence, we then identify a sub-set of cortisol associated trans-genes that are putatively regulated by the glucocorticoid receptor, the primary transcription factor activated by cortisol. Using causal methods, we have identified glucocorticoid regulated trans-genes that are responsible for the regulation of tissue specific gene networks. Cis-eQTLs were used as genetic instruments for the identification of pairwise causal relation- ships, from which cortisol associated gene networks could be reconstructed. Gene networks were identified in liver, subcutaneous fat and visceral abdominal fat, in- cluding a high confidence gene network specific to subcutaneous adipose (FDR < 10%) under the regulation of the interferon regulatory transcription factor, IRF2. Targets in this network include LDB2 and LIPA, both associated with coronary artery disease. Finally, we identify coordinated patterns of gene expression, representative of the STARNET gene networks, in gene expression data from the Metabolic Syndrome in Men (METSIM) and the Stockholm Atherosclerosis Gene Expression (STAGE) Study, both independent datasets from STARNET. This thesis describes genetic variation at the SERPINA6/ SERPINA1 locus that is associated with changes in both morning plasma cortisol and SERPINA6 expression in liver, the gene that encodes CBG. Altered CBG levels in turn impact gene expression in extra-hepatic tissues through modulation of cortisol delivery. This supports a dynamic role for CBG in modulating cortisol delivery to tissues. The cortisol-responsive gene networks identified here represent candidate pathways to mediate cardiovascular risk attributable to elevated cortisol

    Plasma cortisol-linked gene networks in hepatic and adipose tissues implicate corticosteroid-binding globulin in modulating tissue glucocorticoid action and cardiovascular risk

    Get PDF
    Genome-wide association meta-analysis (GWAMA) by the Cortisol Network (CORNET) consortium identified genetic variants spanning the SERPINA6/SERPINA1 locus on chromosome 14 associated with morning plasma cortisol, cardiovascular disease (CVD), and SERPINA6 mRNA expression encoding corticosteroid-binding globulin (CBG) in the liver. These and other findings indicate that higher plasma cortisol levels are causally associated with CVD; however, the mechanisms by which variations in CBG lead to CVD are undetermined. Using genomic and transcriptomic data from The Stockholm Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET) study, we identified plasma cortisol-linked single-nucleotide polymorphisms (SNPs) that are trans-associated with genes from seven different vascular and metabolic tissues, finding the highest representation of trans-genes in the liver, subcutaneous fat, and visceral abdominal fat, [false discovery rate (FDR) = 15%]. We identified a subset of cortisol-associated trans-genes that are putatively regulated by the glucocorticoid receptor (GR), the primary transcription factor activated by cortisol. Using causal inference, we identified GR-regulated trans-genes that are responsible for the regulation of tissue-specific gene networks. Cis-expression Quantitative Trait Loci (eQTLs) were used as genetic instruments for identification of pairwise causal relationships from which gene networks could be reconstructed. Gene networks were identified in the liver, subcutaneous fat, and visceral abdominal fat, including a high confidence gene network specific to subcutaneous adipose (FDR = 10%) under the regulation of the interferon regulatory transcription factor, IRF2. These data identify a plausible pathway through which variation in the liver CBG production perturbs cortisol-regulated gene networks in peripheral tissues and thereby promote CVD

    Cystatin C is glucocorticoid responsive, directs recruitment of Trem2+ macrophages, and predicts failure of cancer immunotherapy

    Get PDF
    Cystatin C (CyC), a secreted cysteine protease inhibitor, has unclear biological functions. Many patients exhibit elevated plasma CyC levels, particularly during glucocorticoid (GC) treatment. This study links GCs with CyC’s systemic regulation by utilizing genome-wide association and structural equation modeling to determine CyC production genetics in the UK Biobank. Both CyC production and a polygenic score (PGS) capturing predisposition to CyC production were associated with increased all-cause and cancer-specific mortality. We found that the GC receptor directly targets CyC, leading to GC-responsive CyC secretion in macrophages and cancer cells. CyC-knockout tumors displayed significantly reduced growth and diminished recruitment of TREM2+ macrophages, which have been connected to cancer immunotherapy failure. Furthermore, the CyC-production PGS predicted checkpoint immunotherapy failure in 685 patients with metastatic cancer from combined clinical trial cohorts. In conclusion, CyC may act as a GC effector pathway via TREM2+ macrophage recruitment and may be a potential target for combination cancer immunotherapy.publishedVersio

    Variation in the SERPINA6SERPINA1 locusalters morning plasma cortisol, hepatic corticosteroid binding globulin expression, gene expressionin peripheral tissues, and risk of cardiovascular disease

    Get PDF
    The stress hormone cortisol modulates fuel metabolism, cardiovascular homoeostasis, mood, inflammation and cognition. The CORtisol NETwork (CORNET) consortium previously identified a single locus associated with morning plasma cortisol. Identifying additional genetic variants that explain more of the variance in cortisol could provide new insights into cortisol biology and provide statistical power to test the causative role of cortisol in common diseases. The CORNET consortium extended its genome-wide association meta-analysis for morning plasma cortisol from 12,597 to 25,314 subjects and from ~2.2 M to ~7 M SNPs, in 17 population-based cohorts of European ancestries. We confirmed the genetic association with SERPINA6/SERPINA1. This locus contains genes encoding corticosteroid binding globulin (CBG) and α1-antitrypsin. Expression quantitative trait loci (eQTL) analyses undertaken in the STARNET cohort of 600 individuals showed that specific genetic variants within the SERPINA6/SERPINA1 locus influence expression of SERPINA6 rather than SERPINA1 in the liver. Moreover, trans-eQTL analysis demonstrated effects on adipose tissue gene expression, suggesting that variation

    Variation in the SERPINA6/SERPINA1 locus alters morning plasma cortisol, hepatic corticosteroid binding globulin expression, gene expression in peripheral tissues, and risk of cardiovascular disease

    Get PDF
    The stress hormone cortisol modulates fuel metabolism, cardiovascular homoeostasis, mood, inflammation and cognition. The CORtisol NETwork (CORNET) consortium previously identified a single locus associated with morning plasma cortisol. Identifying additional genetic variants that explain more of the variance in cortisol could provide new insights into cortisol biology and provide statistical power to test the causative role of cortisol in common diseases. The CORNET consortium extended its genome-wide association meta-analysis for morning plasma cortisol from 12,597 to 25,314 subjects and from similar to 2.2 M to similar to 7 M SNPs, in 17 population-based cohorts of European ancestries. We confirmed the genetic association with SERPINA6/SERPINA1. This locus contains genes encoding corticosteroid binding globulin (CBG) and alpha 1-antitrypsin. Expression quantitative trait loci (eQTL) analyses undertaken in the STARNET cohort of 600 individuals showed that specific genetic variants within the SERPINA6/SERPINA1 locus influence expression of SERPINA6 rather than SERPINA1 in the liver. Moreover, trans-eQTL analysis demonstrated effects on adipose tissue gene expression, suggesting that variations in CBG levels have an effect on delivery of cortisol to peripheral tissues. Two-sample Mendelian randomisation analyses provided evidence that each genetically-determined standard deviation (SD) increase in morning plasma cortisol was associated with increased odds of chronic ischaemic heart disease (0.32, 95% CI 0.06-0.59) and myocardial infarction (0.21, 95% CI 0.00-0.43) in UK Biobank and similarly in CARDIoGRAMplusC4D. These findings reveal a causative pathway for CBG in determining cortisol action in peripheral tissues and thereby contributing to the aetiology of cardiovascular disease.</p

    eQTLs as causal instruments for the reconstruction of hormone linked gene networks

    No full text
    Hormones act within in highly dynamic systems and much of the phenotypic response to variation in hormone levels is mediated by changes in gene expression. The increase in the number and power of large genetic association studies has led to the identification of hormone linked genetic variants. However, the biological mechanisms underpinning the majority of these loci are poorly understood. The advent of affordable, high throughput next generation sequencing and readily available transcriptomic databases has shown that many of these genetic variants also associate with variation in gene expression levels as expression Quantitative Trait Loci (eQTLs). In addition to further dissecting complex genetic variation, eQTLs have been applied as tools for causal inference. Many hormone networks are driven by transcription factors, and many of these genes can be linked to eQTLs. In this mini-review, we demonstrate how causal inference and gene networks can be used to describe the impact of hormone linked genetic variation upon the transcriptome within an endocrinology context
    corecore