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Abstract

Increased plasma cortisol levels are associated with Cardiovascular Disease (CVD)

and CVD risk factors, however the tissue specific mechanisms underpinning this

process are poorly understood. A genome wide meta-analysis by the CORtisol NET-

work (CORNET) consortium identified genetic variants, spanning the SERPINA6/

SERPINA1 locus on chromosome 14, associated with morning plasma cortisol and

shown to be causal for ischaemic heart disease. SERPINA6 encodes Corticosteroid

Binding Globulin (CBG), responsible for binding most cortisol in blood and puta-

tively mediating delivery of cortisol to target tissues. This thesis addresses the hy-

pothesis that genetic variants in SERPINA6 influence CBG expression in liver and

cortisol delivery to extra-hepatic tissues, responsible for mediating cortisol-regulated

gene expression.

The Stockholm Tartu Atherosclerosis Reverse Networks Engineering Task study

(STARNET) provides RNA sequencing data for 7 vascular and metabolic tissues from

600 genotyped individuals (mean age 65.8, 70.3% male) undergoing coronary artery

bypass grafting. We have identified 21 Single Nucleotide Polymorphisms (SNPs)

associated with both variation for plasma cortisol at genome wide significance in

CORNET (p ≤ 5×10-8) and with SERPINA6 gene expression in STARNET-liver (q ≤
0.05) as cis-expression Quantitative Trait Loci (eQTLs). We go on to describe the

extra-hepatic consequences of genetic variation for plasma cortisol by linking SNPs

associated with plasma cortisol to genes expressed in trans across STARNET tissues,

finding the highest representation of trans-genes in liver, subcutaneous and visceral

abdominal adipose tissue (FDR = 15%). Through the use of published evidence, we
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then identify a sub-set of cortisol associated trans-genes that are putatively regu-

lated by the glucocorticoid receptor, the primary transcription factor activated by

cortisol.

Using causal methods, we have identified glucocorticoid regulated trans-genes

that are responsible for the regulation of tissue specific gene networks. Cis-eQTLs

were used as genetic instruments for the identification of pairwise causal relation-

ships, from which cortisol associated gene networks could be reconstructed. Gene

networks were identified in liver, subcutaneous fat and visceral abdominal fat, in-

cluding a high confidence gene network specific to subcutaneous adipose (FDR <

10%) under the regulation of the interferon regulatory transcription factor, IRF2.

Targets in this network include LDB2 and LIPA, both associated with coronary artery

disease. Finally, we identify coordinated patterns of gene expression, representa-

tive of the STARNET gene networks, in gene expression data from the Metabolic

Syndrome in Men (METSIM) and the Stockholm Atherosclerosis Gene Expression

(STAGE) Study, both independent datasets from STARNET.

This thesis describes genetic variation at the SERPINA6/ SERPINA1 locus that

is associated with changes in both morning plasma cortisol and SERPINA6 expres-

sion in liver, the gene that encodes CBG. Altered CBG levels in turn impact gene

expression in extra-hepatic tissues through modulation of cortisol delivery. This

supports a dynamic role for CBG in modulating cortisol delivery to tissues. The

cortisol-responsive gene networks identified here represent candidate pathways to

mediate cardiovascular risk attributable to elevated cortisol.



Lay summary

Cortisol is a steroid hormone that is produced by the adrenal glands and released

in response to stress, thereby regulating a variety of biological functions. However,

if cortisol levels are not properly controlled this can result in the development of

disease. Individuals with high levels of cortisol over a prolonged period may go

on to develop Cushing’s syndrome which can result in high blood pressure, high

blood glucose, and obesity. Moreover, subtle elevations in cortisol levels in other-

wise healthy individuals has been linked to high blood pressure, type II diabetes

and increased risk of heart disease. Variation in cortisol levels in the population has

been attributed, in part, to genetic changes in a gene known as SERPINA6.

This PhD thesis describes how genetic variation in SERPINA6 can be linked to

molecular changes within networks of genes. Using large genetic datasets, variants

in the genetic code for SERPINA6 were identified that are associated with changes in

levels of SERPINA6 in liver. These genetic variants are also associated with changes

in the activity of networks of different genes in fat, where cortisol influences body

weight and metabolism. By understanding how these networks work, this provides

insight into how our genes influence cortisol levels in the body and how this may

lead to disease.

v





Acknowledgements

I am greatly appreciative of the many people who have aided and supported me

both academically and personally, making this PhD a truly enriching and enjoyable

experience.

I would like to thank Johan Björkegren for his generous access to the STARNET

cohort, without which this project would not have been possible, as well as other

members of the Björkegren lab and the scientific computing team at Mount Sinai

School of Medicine.

I am indebted to the developers of the many open access computational tools used

throughout this project, in particular to Lingfei Wang and Tom Michoel for the de-

velopment of the causal inference package Findr. Also to the teams behind the many

Python libraries, including SciPy, Pandas and Seaborn.

I have benefited greatly from the work of Andrew Crawford and all other analysts

and principal investigators of the CORNET consortium whose painstaking work has

made it possible to dissect the role of genetic variation for cortisol. I am grateful to

the Medical Research Council and The University of Edinburgh for the funding of

my PhD studentship. I also wish to thank all of the patients who generously con-

tributed to the many studies that were used over the course of this project.

I am greatly appreciative of members of the human steroid signalling group at the

University of Edinburgh Centre for Cardiovascular Science; Ruth Morgan for kindly

providing access to murine RNA-seq data, Elisa Villalobos for her time and patient

guidance conducting cell culture experiments and Marisa Magennis for her tireless

vii



help with the various administrative and technical issues encountered. My thanks

also to Allende Miguelez-Crespo, Mark Nixon, Rebecca Reynolds, Kerri Devine, Lisa

Ivatt, Natalie Homer, Clare MacLeod, Jo Simpson, Roland Stimson, Scott Denham

for contributing to the lively discussion during our lab meetings. I also wish to

thank the former Michoel lab members Pau Erola, Siddharth Jayaraman (and Lingfei

again) for their advice and guidance while introducing me into the world of bioin-

formatics.

I particularly want to thank all of my supervisors: Ruth Andrew for her patient and

invaluable feedback for written work as well as sound advice throughout my PhD;

Brian Walker for his guidance, both academic and career orientated, and for push-

ing me toward new collaborations and opportunities; Tom Michoel for his unwaver-

ing mentorship and support that has allowed me to develop as a scientist. I would

also like to thank Tom and Brian together, for their work in conceptualising an ex-

citing cross-disciplinary project that has been a privilege to be a part of.

A huge debt of gratitude is owed my parents for continued support and understand-

ing throughout my lengthy academic journey and to my friends who have helped

keep me sane throughout. My final thanks goes out to Erin for her encouragement,

patience and for our late night science discussions while working through the prob-

lems of the day.



Table of Abbreviations

Abbreviation Definition

ABC ATP-binding cassette

ACTH Adrenocorticotropic Hormone

CAD Coronary Artery Disease

CBG Corticosteroid Binding Globulin

ChIP-seq Chromatin Immunoprecipitation sequencing

CIT Causal Inference Test

CMD Cardiometabolic Disease

CORNET Cortisol Network

CVD Cardiovascular Disease

DAVID Database for Annotation, Visualization and Integrated Discovery

dbGaP Database of Genotypes and Phenotypes

ENCODE The Encyclopedia of DNA Elements

ER Endoplasmic Reticulum

FDR False Discovery Rate

FFL Feed-Forward Loop

Findr Fast Inference of Networks from Directed Regulations

GO Gene Ontology

GR Glucocorticoid Receptor

GRE Glucocorticoid Response Element

GTEx Genotype-Tissue Expression project

GWAMA Genome Wide Meta Analysis

GWAS Genome Wide Association Studies

HMDP Hybrid Mouse Diversity Panel

HPA Hypothalamic–Pituitary–Adrenal (axis)

IRF Interferon Regulatory Factor

IV Instrumental Variable

LCMS likelihood-based causality model selection

LD Linkage Disequilibrium

LLR Log Likelihood Ratio

MAF Minor Allele Frequency

METSIM Metabolic Syndrome in Men study

MR Mineralocorticoid Receptor

PCA Principal Component Analysis

QTL Quantitative Trait Loci

RMA Robust Microarray Average

SERPIN Serine Protease Inhibitor

SGBS Simpson–Golabi–Behmel Syndrome

SNP Single Nucleotide Polymorphism

STAGE Stockholm Atherosclerosis Gene Expression study

STARNET Stockholm Tartu Atherosclerosis Reverse Networks Engineering Task study

TPM Transcripts Per Million

ix





Contents

Declaration i

Abstract iii

Lay summary v

Acknowledgements vii

Table of Abbreviations ix

1 Introduction 1

1.1 Thesis scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Moving beyond GWAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Retrospective of eQTL studies . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Causal inference in genetic epidemiology . . . . . . . . . . . . . . . . . . 13

1.5 Reconstruction of causal gene networks . . . . . . . . . . . . . . . . . . 15

1.6 Cortisol and the glucocorticoid receptor . . . . . . . . . . . . . . . . . . 19

1.7 Plasma cortisol and cardiovascular disease . . . . . . . . . . . . . . . . . 21

1.8 Genetic variation for plasma cortisol . . . . . . . . . . . . . . . . . . . . 22

1.9 Cortisol binding Globulin . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.10 Hypothesis and aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.11 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Cis-eQTL discovery and global tissue specific influence of CORNET SNPs 29

xi



2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Genetic variation and plasma cortisol . . . . . . . . . . . . . . . . 29

2.1.2 Plasma cortisol linked gene expression . . . . . . . . . . . . . . . 31

2.1.3 Chapter objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 QC and normalisation of STARNET gene expression . . . . . . . 34

2.2.3 eQTL discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.4 Identification of trans-associated genes . . . . . . . . . . . . . . . 38

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1 Identification of SERPINA6 cis-eQTLs in STARNET-liver associ-
ated with plasma cortisol . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.2 Cortisol associated SNPs mediate global tissue specific effects . 45

2.3.3 Identification of genes trans-associated to CORNET SNPs . . . . 47

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.1 Genetic variation for plasma cortisol is mediated through CBG . 52

2.4.2 Trans-effects of cortisol associated SNPs predominantly observed
in liver and fat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.6 Supplementary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Glucocorticoid regulated causal gene networks 73

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.1 Glucocorticoid regulated trans-genes . . . . . . . . . . . . . . . . 73

3.1.2 Glucocorticoid regulated gene networks . . . . . . . . . . . . . . 75

3.1.3 Chapter objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.1 Identification of glucocorticoid regulated trans-genes . . . . . . 79



3.2.2 Gene network reconstruction . . . . . . . . . . . . . . . . . . . . . 80

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.1 Identification of glucocorticoid responsive trans-genes in liver
and adipose tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.2 Identification of cortisol responsive gene networks in hepatic
and adipose tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.3 IRF2 targets overrepresented within IRF2 network . . . . . . . . 96

3.3.4 Application of independent genetic instruments for gene net-
work reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4.1 Cortisol associated trans-genes include genes regulated by GR . 101

3.4.2 GR regulated trans-genes mediate transcriptional networks . . . 102

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.6 Supplementary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4 Replication of cortisol associated trans-genes and networks 125

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.1.1 Replication of cortisol associated trans-genes . . . . . . . . . . . 125

4.1.2 Replication of glucocorticoid regulated gene networks . . . . . . 127

4.1.3 Chapter objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2.2 trans-gene replication . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2.3 Gene network replication . . . . . . . . . . . . . . . . . . . . . . . 132

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3.1 Replication of cortisol associated trans-genes . . . . . . . . . . . 134

4.3.2 Correlations in gene expression between network targets . . . . 137

4.3.3 Correlations in gene expression between network regulators and
targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.4.1 Independent trans-associations within SERPINA6/ SERPINA1 lo-
cus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.4.2 Network targets are highly correlated in independent cohorts . . 152

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.6 Supplementary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5 Conclusions and future work 163

5.1 Cortisol associated genetic variation is driven by changes in SERPINA6
expression in liver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.2 Genes trans-associated with plasma cortisol are regulated by GR in dif-
ferent tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.3 GR regulated trans-genes drive transcriptional networks . . . . . . . . . 168

5.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Bibliography 175



Chapter 1

Introduction

1.1 Thesis scope

Since the inception of Genome Wide Association Studies (GWAS), nearly two decades

ago1, there has been a steady expansion in the number of studies conducted as well

as the sample size, yielding a wealth of new genetic associations with complex traits

and disease. This approach has offered many new opportunities in endocrinology,

where hormonal networks are well understood and hence lend themselves to in-

formed mapping approaches. However, loci identified by GWAS alone are insuffi-

cient to elucidate the mechanisms by which these traits emerge2 and efforts to un-

derstand the biology underpinning these associations has proved to be a significant

challenge.

Much of the genetic research related to hormones has focused on monogenic

endocrine disorders with scope for clinical intervention through genetic testing schemes.

Examples include Autoimmune Polyglandular Syndrome Type 13 and IPEX syndrome4

involving germline mutations within the AIRE and FOXP3 genes respectively. How-

ever many genetic variants that contribute to different endocrine disorders and risk

factors arise from common variants identified from GWAS. Natural genetic variation

is a fundamental component of the development of endocrine phenotypes and dis-
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orders, however it has been a challenge to obtain mechanistic understanding from

genetic associations alone. Steroid profiles have been exploited as GWAS traits to

identify regions of the genome associated with changes in hormone levels (Table

1.1), but the downstream consequences of these variants are still poorly understood.

Trait Discovery sample Ancestry Publication year

Plasma cortisol5 12597 European 2014

Testosterone levels in polycystic ovary syndrome6 957 European 2015

Saliva cortisol7 7703 European 2017

Plasma cortisol7 7667 European 2019

DHEAS7 7667 European 2019

Estradiol7 7667 European 2019

Testosterone7 7667 European 2019

Plasma cortisol8 25,314 European 2021

Table 1.1: Notable publicly available GWAS and Genome Wide Meta Analyses (GWAMA) for
endocrine factors.

For medical conditions that arise via a complex disease aetiology, a single mu-

tation is often insufficient to translate the disease genotype to an observable phe-

notype. Unlike Mendelian disorders such as Cystic Fibrosis9 and Huntington’s dis-

ease10, it is the cumulative effect of causal risk variants and their interactions with

environmental factors that is required to cross the threshold of complex disease

phenotype. These effects are often not as simple as an additive model and it is im-

portant to consider the epistatic effects of genetic variation. This is where a complex

trait may be reliant upon the interaction of multiple gene loci11, as in the case with

certain metabolic disorders such as obesity12 and type II diabetes13, with known

endocrine involvement.

There is an unmet need to dissect the influence of complex genetic variation

within highly dynamic systems through the incorporation of multi-omic datasets.

This is particularly prevalent within endocrine systems, where hormone and re-

lated metabolite levels vary in response to environmental and genetic perturba-

tions14,15. Cortisol is the most prominent hormone in the glucocorticoid class of

steroid hormones and is involved in mediating the stress response, as well as in-

fluencing biological functions relating to metabolism and the immune response16.

2
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However, variation in plasma cortisol levels has been linked to Cardiovascular dis-

ease (CVD)7,8 and CVD risk factors such as hypertension17 and type II diabetes18.

A Genome Wide Meta Analysis (GWAMA) carried out by the CORtsiol NETwork

(CORNET) consortium has identified genetic variation associated with morning lev-

els of cortisol in human plasma5,8. This thesis aims to go beyond genome level ob-

servations, by examining how genetic variation at the GWAMA locus may have func-

tional implications for cortisol signalling. Through the integration of multi-tissue

gene expression data, we present a systems level framework for the consequences

of plasma cortisol variation. Steroid signalling is well suited to such an approach, as

steroid hormone networks have been well characterised and are mediated through

transcriptional changes, hence lending themselves to a systems genetics approach.

As well as linking gene expression to plasma cortisol associated genetic variation,

we identify regulatory gene networks being driven by key glucocorticoid responsive

genes. These gene networks were reconstructed using causal inference methodolo-

gies and provide a nuanced understanding of trait linked genetic variation.

In this introduction, we set out to describe how GWAS have been used to iden-

tify genetic variants that are associated with complex traits, as well as discussing

the limitations of association based approaches. The role of Quantitative Trait Loci

(QTLs) in systems genetics is then discussed, including how these have been used to

model the impact of genetic variation upon molecular phenotypes. We then intro-

duce how causal inference methods have been used to overcome some of the lim-

itations of GWAS and how these can be integrated for the reconstruction of causal

molecular networks. Finally, we will then review the aspects of glucocorticoid bi-

ology that are most pertinent to this thesis, before stating the aims and hypotheses

that this thesis will address.

3
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1.2 Moving beyond GWAS

GWAS have been highly successful in identifying trait associated loci, however they

are limited in their ability to ascribe function to genetic variation. Additionally,

GWAS variants, mainly Single Nucleotide Polymorphisms (SNPs), that do cross the

threshold of genome wide significance, have been shown to suffer from the “win-

ner’s curse”19, where associations fail to replicate in independent cohorts. This can

result from the overestimation of effect sizes20, meaning follow up studies are un-

derpowered as effect size calculations are based on these inflated effect sizes, high-

lighting the need for robust validation of loci.

The genetic drivers behind many common disease phenotypes present through

complex multi-factorial models of inheritance21, as is the case in instances of obe-

sity12, cardiovascular disease22 and type II diabetes23. The identification of causal

SNPs is further complicated by the presence of pleiotropy, the phenomenon whereby

genetic variation can be seen to influence multiple phenotypic traits24. Pleiotropy

has been shown to be highly prevalent across the human genome25, with studies

showing that up to 90% of trait associated loci are associated with multiple traits26.

These limitations have encouraged the wider integration of multi-omic data to

provide functional context for GWAS results, linking SNPs to intermediate molecu-

lar phenotypes using systems genetics approaches that consider the global response

to genetic variation27 (Figure 1.1). This is particularly relevant in the case of hor-

mone associated genetic variation, as many hormones mediate signalling across

tissues, through transcriptional changes and can be modelled using these systems

based approaches.

As transcriptomic data has become more readily available from highly powered

studies, there has been a drive to link SNPs to variation in gene expression as ex-

pression Quantitative Trait Loci (eQTLs). High throughput sequencing technolo-

gies such as RNA-seq have facilitated the analysis of gene expression on a genome

wide scale, replacing SNP microarrays as the leading method for gene expression

4
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Figure 1.1: (A) Genetic variation (Left) influences complex traits (Right) through quantitative
changes in intermediate phenotypes (Middle). Molecular interactions are shown as arrows, where
the direction of the arrow indicates the direction of the flow of biological information. (B)
Intermediate phenotypes can be modelled as biological networks using causal inference to uncover
directed relationships between the molecular determinants that mediate the effect of genetic
changes on complex traits.

analysis28. In conjunction with the emergence of large deeply genotyped cohorts,

this has allowed for the mapping of eQTLs on an unprecedented scale. If SNPs as-

sociated with complex traits are also shown to be eQTLs, this may be interpreted

as indicative of functional variation. However, causal relationships are required to

translate statistical associations into biologically meaningful models29. Such ap-

proaches are crucial for deciphering gene-trait relationships, which is something

that GWAS alone are unable to do.

During meiosis, alleles are randomly segregated within chromosomes during

gamete production. This independent assortment ensures that alleles are randomly

distributed across a given population, much in the same way that treatments are

allocated during randomised controlled trials. Therefore, perturbing biological sys-

tems using the natural genetic variation present in a representative population30,31
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makes it possible to examine the impact of genotypic variation given biological con-

text. This provides an avenue to distinguish between direct and indirect conse-

quences of common genetic variation32, something that is not possible using tradi-

tional transgenic models33–35 where the idea of experimentally replicating complex

genotypes within a study population quickly becomes unfeasible at scale.

eQTL genotypes have the potential to establish causal relationships within bi-

ological data36. Systems genetics focuses on the flow of genetic information, from

the gene level to downstream molecular changes. Biological information flows from

eQTLs at the level of the genome to intermediate phenotypes in a unidirectional

manner, allowing for the identification of causal relationships between genetic vari-

ation and downstream traits37. Variation in hormone levels influence a wide range

of traits across multiple tissues38, with a high risk of unobserved confounding af-

fecting putative relationships obtained from association analysis. Understanding

the direction of causal relationships is a necessary step to combat complex disease

by distinguishing potential therapeutic targets from their downstream effects39.

Biological networks reconstructed from multi-omic data that respond to both

genetic and environmental perturbations, provide a more holistic view of how ge-

netics may influence phenotype27. Causal inference methodologies are necessary

to distinguish between causes, consequences and confounding factors of associa-

tions with genetic variation40. Such approaches can be used to transform a group

of associations to a well-organised network of directed causal relationships41.

It has been challenging to identify causal variants from GWAS results alone as

a result of Linkage Disequilibrium (LD), resulting in the observation of the non-

random inheritance of alleles at a given loci with SNPs that are in LD42. Therefore,

if a true causal SNP for a trait is present and detectable at a given locus, the causal

SNP and all other SNPs in LD will be identified as being associated with the trait in

question, leading to an increase in type I error rate43.

Efforts to understand the role genetic variation plays in regulating hormone lev-

els, including cortisol, have been greatly enhanced by the emergence of GWAS. How-

6
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ever, the tissue specific mechanisms underlying these associations cannot be truly

uncovered by association based methodology alone. Likewise, traditional molec-

ular based approaches are ill-suited to examine the impact of common SNPs, of-

ten with very small effect sizes. The type of approaches outlined in this chapter

allow for integration of multi-omic data sources to develop directed causal relation-

ships between intermediate phenotypes. These methods can be applied to uncover

the tissue-specific mechanisms underpinning genetic variation associated with en-

docrine traits, including plasma cortisol variation.

1.3 Retrospective of eQTL studies

GWAS has exploded in popularity over the course of the last decade. As of 2018, the

NHGRI-EBI GWAS Catalog lists 5687 studies for more than 71,000 traits44. However

most of the genome-wide significant loci identified are of low to moderate pene-

trance, exacerbating the issue of missing heritability that has been predicted for

complex traits45–48. This includes traits such as type II diabetes where only 10% of

heritability is explained by the GWAS variants that have currently been identified23,

although twin and population studies estimate heritability to be between 20-80%49.

Missing heritability, combined with the uniform distribution of GWAS hits across

the genome, has even led to speculation of an "omnigenic" model of inheritance in

which all genes in trait-related cells play a functional role in the resultant pheno-

type45.

To overcome these limitations and garner greater benefit from GWAS datasets,

there has been an increased focus to identify the functional and mechanistic con-

sequences that are brought on by complex genetic variation. Linking GWAS loci to

gene expression provides some indication of a functional relationship, and indeed

data have demonstrated that trait-associated SNPs are more likely than non-trait-

associated SNPs to also be associated with changes in gene expression (eSNPs)50.

eSNPs describe the association between a single SNP with changes in gene expres-

sion whereas eQTLs are reflective of the association between a genetic locus and
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gene expression.

Although association with changes in gene expression is not a direct proxy for

function, this does help to better characterise systemic changes that are elicited in

response to trait-associated genetic variation. This approach has been been used

to expand understanding of conditions such as obesity. In 2015 researchers used a

porcine model to first identify obesity related genes using a linear model, and then

integrated gene expression data to find eQTLs for these genes within subcutaneous

adipose tissue. Many of these eQTL linked genes identified were associated with

lipid pathways, which highlights the capability of eQTL based approaches to gen-

erate functional findings that can be targeted by experimentalists51. It is important

in such studies to consider external variables when sampling, as unlike genotypes,

gene expression is highly variable. Factors such as time of day among other covari-

ates, can introduce bias into any association study that can lead to findings that are

not reflective of genotype related changes in gene expression.

eQTLs are categorised on the basis of their proximity to the gene locus with

which they are associated (Figure 1.2). This distinction is important as it provides

insight into the mechanisms by which an eQTL mediates an effect on gene expres-

sion. Cis-eQTLs, located close to their associated gene, are more likely to be acting

locally than those located further away. Typically this distance is defined as being

within 1 Mb of the associated transcription start site52. Outside of this threshold,

eQTLs are said to be acting distally with associated genes in trans. Trans-eQTLs can

be associated with genes located several megabases away including those on other

chromosomes.

If an eQTL is cis-acting, this is likely to suggests a physical interaction between

the eQTL and the associated gene. For example, a cis-eQTL sitting in an enhancer

region may facilitate either an increased or decreased affinity for binding with a

transcription factor53,54. Trans-eQTLs, on the other hand, associated with a distal

gene, may influence transcription indirectly through an intermediary gene product

or working in conjunction with local cis-eQTLs55. Most gene regulation takes place
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Figure 1.2: Cis and trans gene regulation. Gene A (green) encodes a transcription factor (TF) which
regulates the expression of gene B (purple). The eQTL (yellow), acts as a cis-eQTL for gene A by
causing a change in the sequence of gene A’s cis-regulatory element (orange) which may either
increase or decrease the binding affinity of any corresponding TFs. The same eQTL is a trans-eQTL
for Gene B as by changing the expression of the TF encoded by gene A, this in turn influences the
expression of gene B.

in cis, within regulatory regions and this is reflected by cis signals appearing more

strongly than trans effects from eQTL mapping studies56.

Multiple reproducible trans-eQTLs have been identified, often located in non-

coding regions of the genome. Some of these trans-eQTL signals influence the ex-

pression of multiple genes, leading to the identification of regions of the genome

termed as eQTL hot spots57. As these mechanisms are indirect, this presents a

mechanism for genetic variation influencing hormone mediated transcription fac-

tors, which will then in turn influence the expression of trans-associated genes. Ex-

amples of this include a 2020 study where researchers interested in genomic loci

associated with intramuscular fat, identified nine eQTL hot spot regions associ-

ated with intramuscular fat and harbouring transcription factors involved in lipid

metabolism53.

The study of eQTLs has been greatly aided by the advancement in high through-
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put sequencing technologies such as RNA-seq. As one of the limiting factors for

large scale eQTL analysis has been sample size, reduced sequencing costs have alle-

viated this limitation in conjunction with reduced costs for high performance com-

puting to analyse millions of SNP-gene combinations simultaneously58. This also

facilitates the processing of a wider variety of biological samples in terms of tissue

or cell types. In turn this has led to the establishment of large database projects

aiming to produce catalogues of eQTLs across multiple tissues (Table 1.2). Under-

standing the tissue specific context of eQTLs is a crucial step in understanding how

these SNPs may influence phenotypic variation.

Study name Number of samples Description

GTEx 15,201 Multi-tissue dataset from post mortem donors59.

HipSci 322 Induced pluripotent stem cells derived from healthy donors60.

Geuvadis 445 Lymphoblastoid cell lines from five populations61.

BLUEPRINT 554 Monocyte, neutrophils and T-cells from healthy donors62.

TwinsUK 1,364 Fat, skin, blood and lympoblastic cell lines from twin pairs63.

STARNET 3,786 Multi-tissue dataset from individuals undergoing surgery for coronary artery disease64.

eQTLGen 31,684 Meta-analysis of cis and trans eQTL analysis in blood65.

Table 1.2: Examples of major publicly available eQTL datasets.

One of the most comprehensive projects to produce an atlas of transcriptome

wide genetic effects has been conducted by the GTEx consortium59, who have gen-

erated tissue specific eQTL data from an impressive number of post-mortem sam-

ples. With the latest release of data from GTEx v866, the authors present both trans

and cis associations from 49 different tissues. Genomes are consistent between cell

types, but the way in which these genes are expressed varies drastically between

tissues, and much of the regulation that mediates this disparity takes place at the

transcriptome. Therefore, to effectively characterise the genetic architecture that

regulates the transcriptome it is important to sample from as many different tissues

as possible.

Due to the increase in available eQTL datasets, there has been a need for the

compilation and curation of existing data. Differences in analysis and quantifica-

tion methods, impedes certain downstream analyses such as colocalisation67 which

requires comparable summary statistics. Colocalisation refers to the colocalisa-
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tion of trait-associated SNPs with changes in gene expression to ascribe function

to GWAS hits and prioritise the identification of causal SNPs68,69.

Although eQTL studies provide useful functional insight to GWAS hits, some im-

portant caveats remain. One question focuses upon the diversity of donor popula-

tions in both GWAS and eQTL studies. In GTEx the majority (85.3%) of donors have

a European American ancestry which is common among many such studies70, but

may raise issues where findings are inferred to be generalisable without being fully

representative of different human populations.

Another concern is that as transcriptional output does not perfectly correlate

with proteomic output, the influence of many eQTLs at the protein level has been

uncharacterised. More studies now aim to identify protein Quantitative Trait Loci71

(pQTLs), genetic variants associated with protein expression, however proteomic

analysis is more costly than RNA-seq and requires considerable sample sizes to re-

main robust. A 2018 study by Yao and colleagues72 demonstrated colocalisation

between eQTL and pQTL signals for 190 variants out of a total of 372 pQTLs. This

shows that although there are signals consistent between transcript and protein lev-

els, confounding factors such as protein turnover and protein: protein interactions

means that changes in the transcriptome are not always directly reflected at the pro-

teome.

In this thesis, we examined the transcriptomic impact of cortisol associated ge-

netic variation using the Stockholm Tartu Atherosclerosis Reverse Networks Engi-

neering Task (STARNET) study. Individuals in this study were genotyped and RNA

sequencing was conducted for seven different vascular and metabolic tissue sam-

ples (Figure 1.3A), for 600 patients undergoing bypass surgery for Coronary Artery

Disease (CAD). This resource has been used to identify tissue specific and cross tis-

sue cis (proximal) and trans (distal) gene regulation associated with CAD64.

This cohort was composed of Caucasian individuals from Eastern European ori-

gin (30% female), with a confirmed diagnosis of CAD (Figure 1.3B). Of these individ-

uals 27% had diabetes, 77% had hypertension and 37% had suffered a myocardial
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Figure 1.3: (A) Number of samples collected per tissue from STARNET. Tissue samples include;
Subcutaneous Fat (SF), Internal Mammary Artery (MAM), Liver (LIV), Atherosclerotic Aortic Root
(AOR), Skeletal Muscle (SKLM), Visceral Abdominal Fat (VAF) and Whole Blood (Blood). (B)
Summary statistics of the STARNET cohort. Adapted from Franzen et al 201664

infarction before 60. The whole blood samples were taken pre-operatively and the

remaining tissue biopsies were obtained during open-heart surgery. This cohort

presents a unique opportunity to systematically link common genetic variation for

plasma cortisol to changes in gene expression in a representative cohort of individ-

uals with a confirmed diagnosis of CAD.

There are caveats relating to the study design, that need to be considered when

considering studies such as STARNET. Although the initial aim of the study was to

identify changes in gene expression that could be associated with CAD, specially

atherosclerosis, other comorbidities such as hypertension and diabetes may act as

confounding factors for any associations. The fact that this is not a healthy popu-

lation, also may lead to findings which are not generalisable to the broader popula-

tion. Another issue to be considered is the application of such a study when exam-

ining the impact of genetic variation for plasma cortisol, as both the anticipatory

and surgical stress response means that cortisol levels will be higher for samples
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obtained during surgery compared to non-surgical conditions.

1.4 Causal inference in genetic epidemiology

A fundamental aim in genetic analysis has been to identify functional relationships

between genetic variation and complex phenotypes, however this has not always

been possible in a laboratory setting. Randomised controlled trials are often, rightly,

held up as the gold standard for studying causal effects. However there are many in-

stances when a randomised controlled trial is either unfeasible or unethical to carry

out73. Fortunately, the random segregation of alleles during meiosis36 offers a solu-

tion. Given a large enough sample size, it is possible to predict causal relationships

between different phenotypes, using associated genotypes as genetic instruments

for causal inference analysis.

Instrumental Variable (IV) analysis is a causal inference framework that has been

applied to obtain causal relationships between biological traits (Figure 1.4). For this

methodology, the IV is used to infer a causal relationship between an exposure and

an outcome variable. IV analysis requires the following assumptions: 1) The IV

should be robustly associated with the exposure. 2) The IV should only be causal

for the outcome through the exposure73. 3) The IV should be independent from

any confounding factors that are causal for the exposure or the outcome74,75. Given

these assumptions, it is possible to use the IV as a proxy for the exposure to infer a

directed relationship between the exposure and outcome.

Z X Y

U

Figure 1.4: Instrumental Variable paradigm. The instrumental variable (Z) is causally associated
with the exposure (X) which in turn is causally associated with the outcome (Y). The IV will account
for any confounding (U) that affects the exposure or outcome, assuming independence of U.

Mendelian randomisation is a causal inference based approach that has become
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increasingly popular in recent years as an extension of IV analysis. The randomisa-

tion refers to the way in which alleles randomly segregate from parent to offspring73.

Mendelian Randomisation aims to address the missing functionality of GWAS, while

using GWAS data, often now with just summary statistics, to infer causality between

traits given the exposure-outcome paradigm. Given the flexibility of this model, it is

possible to infer causality between gene expression and GWAS traits using eQTLs as

IVs37.

The use of genetic variants as instruments in IV analysis has become an impor-

tant method for establishing causal relationships in biological systems where gene

expression acts as an exposure. eQTLs have been shown to satisfy the IV assump-

tions through a robust association with gene expression, given the same eQTL is

not also directly associated with the outcome. This also overcomes issues related to

confounding as genetic variation is fixed at conception of the foetus and is there-

fore highly unlikely to be confounded by the same causal factors influencing down-

stream phenotypes76. Issues can arise when an eQTL is also directly associated with

the outcome, however this can be overcome through careful instrument selection

and testing for pleiotropy77.

IV analysis overcomes some of the pitfalls that are present in other statistical

techniques such as mediation analysis. Mediation analysis establishes a relation-

ship between an exposure and an outcome variable through a third variable, the

mediator. This assesses the direct and indirect relationship between the exposure

and the outcome by conditioning on the mediator to calculate the probability of

both the direct and indirect relationship78. A drawback is that mediation is suscep-

tible to collider bias, resulting in confounding between the mediator and outcome.

This occurs when the researcher conditions on the mediator, opening a backdoor

path between the exposure and the outcome suggesting a causal relationship where

one does not exist79.

Other causal methods have focused on the identification of causal variants, as

opposed to obtaining directed causal relationships. Statistical fine-mapping in-
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tegrates data related to LD and the structural context of trait-associated SNPs to

identify variants that are causal for a given trait80. Fine-mapping methods such as

RASQUAL, aim to identify causal variants that result in changes in allelic imbalance

in regulatory regions by examining the prevalence of chromatin accessibility QTLs

(caQTLs) using ATAC-seq data81.

Other causal approaches include colocalisation analysis. Most colocalisation

methods have aimed to identify a shared causal variant in a comparison between

traits, while taking into account LD. One of the most commonly used tools for colo-

calisation analysis, is the Bayesian method, Coloc, developed by Giambartolomei et

al82. This method uses five hypothesis tests to estimate the probability of a shared

causal variant against a null hypothesis and has become one of the foremost meth-

ods for colocalisation analysis. Colocalisation analysis is desirable as it allows for

the identification of SNP peaks shared by multiple traits, including association with

gene expression, and allows for the prioritisation of causal SNPs.

1.5 Reconstruction of causal gene networks

Jansen and Nap first proposed the integration of genomic information to identify

changes in continuous molecular traits associated with the segregation of geno-

types within a population in 200183. What the authors originally describe as "ge-

netical genomics", outlines a strategy to link genetic variation within a population

to gene expression data, at the time obtained from microarray assays, and to other

sources of expression data relating to proteins and metabolites. This has provided

the foundation for modern day systems genetics27, which allows for the integration

of genetic and quantitative data with the ultimate aim of generating biological net-

works that can be linked to complex traits.

Most network based approaches to date have focused on correlation, through

the development of co-expression networks using transcriptomic data84. Co-expression

networks were first proposed in the 1990s85 and have been used to identify novel
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pathways in complex traits and disease as wide ranging as depression86, muscular

disease,87 and CVD88. They have also been used to identify clusters of genes that are

linked to different phenotypic characteristics for conditions such as endometrio-

sis89. These methods are capable of reconstructing edges (connections between

nodes) between co-expressed genes but are limited due to their inability to distin-

guish between different causal models (Figure 1.5).

Gene A Gene B

Trait A

Gene B Gene A

Trait A

Gene A Gene B

Trait A

Confounder

Figure 1.5: Causal modelling of pairwise gene-gene relationships. (Left) Simple causal model where
Trait A is influenced by Gene A, through Gene B. (Middle) Reactive model where Gene B influences
both Gene A and Trait A, therefore any association between Gene A and Trait A is a non-causal
relationship. (Right) Association between Genes A and B is a result of unobserved confounding,
therefore there is no causal relationship between Gene A and Trait A.

Pairwise gene-gene relationships are capable of providing a foundation for gene

network reconstruction using sufficiently large transcriptomic datasets90–92. IV based

methods can be used to obtain probability estimates for causal relationships be-

tween genes when provided with robust genetic instruments. A method that facil-

ities this approach is the tool Findr, which incorporates eQTLs within an IV frame-

work to obtain the Bayesian posterior probability of a causal relationship between a

pair of genes, using a combination of likelihood ratio tests to account for any unob-

served confounding92.

Bayesian networks are acyclic graphs that have been used for modelling gene

networks as they allow for the incorporation of prior knowledge and are capable of

resolving issues of conditional independence in data93,94. Bayesian networks are

developed using frequency tables from discrete data, however in cases of continu-

ous data such as transcriptomic datasets, posterior probabilities can be calculated

from density functions95. By obtaining posterior probabilities for pairwise relation-
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ships between genes with tools such as Findr, it is possible to reconstruct networks

of genes (nodes) that are connected by posterior probabilities (edges) at a given

threshold (Figure 1.6).

Figure 1.6: Reconstructing gene networks from pairwise relationships. (Left) Prospective pairwise
relationships between genes with a robust eQTL (blue and orange) and other genes within a dataset.
(Middle) Causal inference approaches are employed to obtain a probability matrix for the likelihood
of a causal relationship between gene pairs. (Right) A filtering step is imposed e.g. a FDR cut-off,
which will return relationships that cross this threshold to be assembled as directed networks.

There is a wealth of data relating to the role of gene regulation, including avail-

able cis-regulatory elements96 and transcription factor binding sites97. The incor-

poration of these data allows for the construction of robust priors for Bayesian causal

inference. eQTLs are also particularly well suited to filling this role and have been

used to identify genes driving cardiovascular disease88, type II diabetes98 and Acute

Myeloid Leukaemia99 when combined with gene expression data.

An issue encountered within Bayesian network analysis, is that as the number

of networks nodes increases so does the number of potential network edges. Given

the high dimensional datasets commonly generated from next generation sequenc-

ing, standard Bayesian network methods are often computationally prohibitive100.

Novel methods to overcome the computational burden include the use of eQTL and

transcriptomic data within a node ordering approach which prioritises given rela-

tionships, reducing the number of possible networks101.

Other types of omics data are also also amenable to this approach. Steroid pro-

filing has its roots in the 1960s with the use of gas chromatography for separation102

and advances in mass spectrometry have allowed for high resolution analysis of
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ionised modules103. It is possible to link genotypes to changes in steroid levels, as

evidenced by the number of GWAS conducted in this area (Table 1.1). Causal in-

ference has the potential to integrate relationships between gene expression and

metabolites, using eQTLs as instruments in the IV paradigm previously described.

These methods have the potential to uncover upstream regulatory targets respon-

sible for variation at the level of the metabolome by fully exploiting multi-omic

datasets, with the potential to identify therapeutic targets that correspond to dis-

ease.

Analysis by Gallois et al in 158 serum metabolites, demonstrates that by integrat-

ing traditional association studies with genetic-metabolite networks, a small num-

ber of highly pleiotropic genes can be linked to causal variants responsible for me-

diating variation in metabolite profiles104. This is an example of how integration

of multi-omic datasets can uncover regulatory targets responsible for downstream

variation. However any analysis of SNP-metabolite associations will be subject to

confounding due to the high number of variables that influence changes in metabo-

lite levels, highlighting the need for causal inference.

There is further scope to elucidate the mechanisms of disease through the dis-

section of GWAS hits for complex disease, as demonstrated by Small and colleagues

who were able to reconstruct networks of genes associated with SNPs linked to type

II diabetes and mediated through the gene KLF14105. The researchers were able

to show that cis-eQTLs for KLF14 regulated a larger adipose specific gene network

that was significantly enriched for metabolic pathways. This highlights the role of a

network approach when combined with traditional genetic association and linkage

studies.

There have also been attempts towards the incorporation of in vivo data within a

systems based framework. The Hybrid Mouse Diversity Panel (HMDP) uses a mouse

reference population to examine the cross-tissue impact of gene expression varia-

tion106. The researchers in this study used natural transcript variation to identify

and functionally annotate endocrine circuits. Seldin et al began by screening for
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any correlations between transcripts in their mouse cohort to identify endocrine

factors that correspond to changes in target gene expression while filtering for tis-

sue. They then used pathway enrichment to formulate hypotheses based on their

statistical analysis, which were followed up by experimental validation.

Other approaches have aimed to integrate data from different sources to iden-

tify genes causal for cholesterol metabolism. In this 2020 study107, Li et al used hu-

man lipid GWAS with murine liver co-expression networks to identify causal genes

for cholesterol metabolism. The researchers began with the identification of choles-

terol associated modules within liver networks in mice, followed by cross-referencing

against human GWAS datasets. Such approaches help to prioritise results that can

be taken forward for validation that would be unsuited to a high throughput exper-

imental approach.

In this thesis, we have used a strategy that is similar to those that been out-

lined in this section, while taking causal relationships into account. By identify-

ing pairwise relationships between genes, this has allowed for the reconstruction

of causal gene regulatory networks. These networks aim to characterise the down-

stream transcriptomic consequences of genetic variation for plasma cortisol.

1.6 Cortisol and the glucocorticoid receptor

The biosynthesis of cortisol takes place in the adrenal glands108, through activation

of the hypothalamic–pituitary–adrenal (HPA) axis109 in response to stress. The HPA

axis is stimulated by Adrenocorticotropic hormone (ACTH) secretion, which results

in the release of cortisol, which then inhibits the HPA axis as part of a negative feed-

back loop110. Outside of the stress response, cortisol levels follow a diurnal rhythm,

peaking in the morning and then declining throughout the day111,112. However, cor-

tisol levels have also been demonstrated to respond to ultradian rhythms within a

24-hour period, composed of an intrinsic pulsatility, resulting from delayed ACTH

release and negative feedback regulation113,114.
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In addition to variation in plasma cortisol levels, cortisol is also modulated in-

tracellularly by metabolising enzymes. 11β-HSD1/2 influence tissue availability of

cortisol, with 11β-HSD1 involved in the conversion of cortisone to cortisol115 and

11β-HSD2 inactivating cortisol to cortisone116. Additionally, transmembrane trans-

porters are also involved in the modulation of intracellular cortisol, in particular the

ATP-binding cassette (ABC) family of transporters. An example is the transporter

ABCB1, which is involved in the export of cortisol, but not corticosterone across the

blood brain barrier117.

The primary mediator of glucocorticoid action in humans is the Glucocorticoid

Receptor (GR), which is present in the vast majority of human cells and is highly

conserved across vertebrates118. GR is a transcription factor and is involved in the

regulation of different genes involved with metabolism, immune response and de-

velopment16. GR modulates anti-inflammatory functions through the regulation

of pro-inflammatory genes119. It also plays a crucial role in the metabolism of glu-

cose120 and fatty acids121, as well as modulating the cytotoxic122 and oxidative stress

response123.

When not bound to a ligand, GR is present in the cytoplasm, as part of a heat

shock protein complex124. Once bound to a ligand such as cortisol, GR will translo-

cate to the nucleus to modulate gene expression by binding to Glucocorticoid Re-

sponse Elements (GREs) as a dimer125, although GR can also act as a monomer

which plays an important role in mediating tissue specific transcription by interact-

ing with other DNA bound transcription factors126. Glucocorticoid binding to GR

mostly takes place intracellularly, however there is evidence of membrane bound

receptors with a lower affinity for glucocorticoids as a mechanism of non-genomic

glucocorticoid action127.

GR belongs to the nuclear receptor superfamily which includes the Mineralo-

corticoid Receptor (MR)128. MR has 10-fold greater binding affinity for cortisol than

GR129, which means that MR becomes occupied at low basal levels of cortisol, with

GR being activated as glucocorticoid levels increase130. MR-GR heterodimers have
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also been shown to form, which can bind to GREs and have different transactivation

properties than their respective homodimers131.

Although GR is expressed ubiquitously, there is significant variation in glucocor-

ticoid sensitivity between tissues and among individuals132, which can play a role

in the development of disease. In metabolic syndrome, there are reports of altered

GR mRNA observed in skeletal muscle133 and in adipose134, however these reports

have been inconsistent, highlighting the role of complex regulatory pathways me-

diating transcriptional differences between tissues. Cushing’s syndrome occurs in

response to chronic activation of the HPA axis by increased ACTH secretion or by

autonomous adrenal cortex cortisol release135, resulting in insulin resistance, obe-

sity and hypertension among other symptoms. Conversely, primary adrenal insuf-

ficiency or Addison’s disease presents in response to a lack of cortisol as result of

damage or destruction of the adrenal glands136, resulting in fatigue, hypotension

and weight loss.

1.7 Plasma cortisol and cardiovascular disease

Both Cushing’s and Addison’s are extreme examples of impaired HPA axis function.

However, small but sustained changes in cortisol levels have been shown to be linked

to complex disease phenotypes at a population level, including Cardiovascular Dis-

ease (CVD). CVD is a group of diseases, the presentation and severity of which are

influenced by interactions between environmental, genetic and metabolic risk fac-

tors. The global impact of CVD across the world is striking: in 2012 approximately

17.5 million deaths were as a result of CVD which is the equivalent of 33% of all

deaths worldwide64. Increased plasma cortisol levels have been demonstrated to

be associated with the development of CVD risk factors such as hypertension17 and

type II diabetes18. However, the tissue specific mechanisms and relative contribu-

tion of cortisol to these risk factors are poorly understood.

CVD risk is elevated in patients with Cushing’s and is a major cause of morbidity
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and mortality for these individuals. Glucocorticoid excess increases the risk of CVD,

which can be observed in patients who are prescribed synthetic glucocorticoids137.

Placental environment and low birth weight has also been shown to be mediated

through changes in HPA axis reactivity. Men born with a lower birth weight show in-

creased responsiveness to ACTH as measured by urinary cortisol metabolite excre-

tion, resulting in increased HPA axis activation which leads to raised blood pressure,

glucose intolerance and hypertriglyceridemia138.

A prospective cohort of 2512 men was studied to understand the contribution

of CVD risk factors, including cortisol and testosterone, to CVD outcomes139. This

study was able to identify links between cortisol: testosterone ratio and insulin re-

sistance, in addition to incidents of ischaemic heart disease. A more recent study

of 798 individuals, identified a positive association between morning plasma cor-

tisol and incident of CVD, this finding was backed up by both a meta-analysis of

published studies and two-sample Mendelian randomisation analysis140.

1.8 Genetic variation for plasma cortisol

As discussed previously, cortisol levels are influenced by many factors including

stress, temporal variation in response to circadian rhythms and tissue specific vari-

ation. However, there is inter-individual variation in basal levels of cortisol that

can be attributed to genetic variation. The heritability of plasma cortisol levels has

been estimated to be between 30-60%, although the genetic mechanisms underpin-

ning this heritability are poorly understood141. Associations between plasma corti-

sol and CVD have likely been underestimated, due to the challenges in obtaining

representative epidemiological samples. It is very difficult to obtain samples at a set

time point, an issue that is further complicated by inter-individual variation in wake

times.

This thesis is concerned with the genetic factors that mediate changes in plasma

cortisol levels within a population and stems from the GWAMA by the CORNET con-
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sortium which first identified genetic variants that are associated with changes in

morning levels of plasma cortisol (n=12,597)5. The CORNET GWAMA was expanded

to 25,314 individuals of European ancestry8, however a single locus was identified

that was associated with variation in plasma cortisol in both GWAMAs. This locus

contains the genes SERPINA6 and SERPINA1, which is notable as both genes are

involved in cortisol biology.

There is previously reported evidence of cis-regulation at the SERPINA1/ SER-

PINA6 locus in the form of a locus control region (LCR). LCRs are transcriptional

regulators in mammalian systems, first discovered in the human β-globin locus142,

and responsible for the control of sets of co-regulated genes. In this case the SERPIN

LCR has been shown to interact with multiple liver specific transcription factors143

and deletion of key binding sites has been shown to impact both α-1 antitrypsin

and CBG expression. The SERPIN LCR is located within the region ∼8Kb upstream

of SERPINA1144 and contains 55 SNPs that were identified as being at genome wide

significance in the CORNET GWAMA.

As part of the expanded GWAMA, SNPs associated with plasma cortisol were

used as instruments for Mendelian randomisation to infer causal relationships be-

tween plasma cortisol and CVD risk factors. Causal relationships were established

between plasma cortisol and increased risk of both ischaemic heart disease and

myocardial infarction. In another GWAMA, causal relationships were identified be-

tween cortisol and Coronary Artery Disease (CAD)7. However, despite the presence

of causal relationships between cortisol and CVD outcomes, little is known about

the tissue specific mechanisms linking these factors.

1.9 Cortisol binding Globulin

Cortisol is released into the bloodstream following secretion from the adrenal cor-

tex, where it can diffuse into tissues and bind to GR. However, most cortisol is not

transported freely, as more than 80-90%145,146 of cortisol in the blood is bound to
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corticosteroid binding globulin (CBG) and unable to diffuse into tissues. This leads

to the formation of different cortisol pools in the blood; with up to 90% of cortisol

bound to CBG, 4-5% bound to albumin and a remaining 5% that is free and able to

act in tissues147 (Figure 1.7).

Figure 1.7: Depiction of different cortisol pools in the bloodstream.

Although the identification of SNPs associated with plasma cortisol does not re-

veal a mechanism linking genetic variation to changes in cortisol levels, the identifi-

cation of the SERPINA6/ SERPINA1 locus does indicate directions for investigation.

SERPINA6 is the gene that is responsible for encoding CBG. Additionally, SERPINA1

encodes α-1 antitrypsin, which is responsible for the inhibition of neutrophil elas-

tase, a serine protease responsible for cleavage of the reactive centre loop of CBG,

resulting in a 9-10 fold reduction in binding affinity to cortisol148,149.

CBG is primarily expressed in the liver, where it was first isolated revealing its

structure150. CBG is a member of the serine protease inhibitor (SERPIN) superfam-

ily of proteins, but has lost its inhibitory function while retaining the SERPIN protein

structure151. CBG binds cortisol in the bloodstream, preventing cortisol diffusion to

tissues, although the precise function of CBG in terms of acting as either a trans-

porter of reservoir for cortisol is disputed146,152.

Mutations affecting CBG have been implicated in CBG deficiency. CBG defi-

ciency was first described in familial studies153 and since then has been linked to

both heterozygous and homozygous mutations in SERPINA6. A null mutation was

first described in an Italian-Australian family, resulting in a complete loss of func-

tion of CBG resulting in chronic fatigue and relative hypotension154. Another study

identified a patient who was heterozygous for a de novo mutation in SERPINA6,
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which led to severe muscle fatigue and abnormally high salivary cortisol levels155.

Simard and colleagues, examined the impact of 32 uncharacterised polymorphisms

in SERPINA6 and identified 8 naturally occurring CBG mutants, which result in changes

to cortisol binding affinity, CBG production/ secretion and sensitivity to proteolytic

cleavage156.

Interactions between CBG and glucocorticoids have been studied in an experi-

mental setting through the use of different animal models. Researchers have demon-

strated that CBG-null mice, have a 10 fold increase in free corticosterone levels (cor-

ticosterone being the primary glucocorticoid in mice)157. This suggests that CBG

plays a role in influencing negative feedback of the HPA axis, which in turn would

influence tissue CORT levels. Additionally, BioBreeding rats which are used as a

model for diabetes, have been shown to contain a variant of CBG which has a re-

duced binding affinity for cortisol158.

Although model organisms are useful for examining the tissue specific impact

of the type of mutations identified from familial studies, they are impractical to use

for studying the impact of common genetic variants, as described by the CORNET

GWAMA. The objective of this thesis has been to expand upon the identification of

the SERPINA6/ SERPINA1 locus, associated with variation in cortisol levels. By un-

picking the impact of common genetic variation on gene expression across different

tissues, it is possible to better understand the role of CBG expression in mediating

GR responsive gene expression. This also helps to address the question of whether

CBG influences tissue specific delivery of cortisol. As most genetic variation for cor-

tisol is mediated through GR and therefore through altered transcription, this lends

the study of genetic variation for plasma cortisol to a systems genetics approach.
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1.10 Hypothesis and aims

We hypothesise that cortisol associated genetic variants in the SERPINA6/ SERPINA1

locus influence the levels of CBG in liver and cortisol delivery to extra-hepatic tissues,

influencing GR mediated gene expression.

This hypothesis has been addressed through the following aims:

1. To determine if genetic variation associated with plasma cortisol influences

SERPINA6 expression in liver.

2. To investigate the role of any other genes trans-associated with genetic varia-

tion for plasma cortisol across different vascular and metabolic tissues in the

STARNET cohort.

3. To identify GR responsive genes associated with genetic variation for plasma

cortisol and to utilise causal inference methods to identify key regulator genes

responsible for mediating the effects of genetic variation on downstream tran-

scriptional networks.

4. To replicate any cortisol associated trans-genes or cortisol responsive gene

networks in independent data sources.

1.11 Workflow

A complete workflow of the analyses presented in this thesis can be found at figure

1.8.
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Figure 1.8: Complete workflow of analyses undertaken in this thesis. Workflow describes data
inputs, intermediate results and methods. Red boxes indicate specific analyses.
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Chapter 2

Cis-eQTL discovery and global tissue

specific influence of CORNET SNPs

2.1 Introduction

2.1.1 Genetic variation and plasma cortisol

In their 2014 GWAMA5, the CORNET consortium describes a single SNP peak on

chromosome 14 spanning the SERPINA6/ SERPINA1 locus associated with morning

plasma cortisol. This was followed up with an expanded GWAMA, where the num-

ber of subjects was increased from 12,597 to 25,314 and the number of SNPs from

∼2.2 M to ∼7 M, across 17 population-based cohorts of European ancestries8.

This expanded GWAMA confirmed the previously identified genetic association

spanning the SERPINA6/ SERPINA1 locus on chromosome 14 (Figure 2.1a) without

identifying any new loci. In an additive genetic model, the top SNP, rs9989237, re-

ported a per minor allele effect of 0.11 cortisol z-score (p = 2.2×10-19). The minor

allele frequency of this SNP was 0.22, explaining 0.13% of the morning cortisol vari-

ance. The locus contained 73 SNPs that crossed the threshold of genome wide sig-

nificance (p ≤ 5×10-8) and contains 4 blocks of SNPs in low LD (r2 < 0.3) (Figure
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2.1b-c).

Figure 2.1: (a) Manhattan plot of -log10 P values of the SNP-based association analysis of morning
plasma cortisol (n = 25,314). The locus on chr14 spans SERPINA6 and SERPINA1 genes; no other loci
reached genome-wide significance. (b, c) Zoomed in Manhattan plot (LocusZoom plot) of -log10 P
values of the SNP-based association analysis of morning plasma cortisol (n = 25,314). These show
two (of the four) LD blocks (r2 > 0.3) in this locus. Adapted from (Crawford, Bankier et al, 20218).

Additionally, Mendelian Randomisation analysis was undertaken to identity causal

relationships between plasma cortisol and CVD phenotypes. LD clumping yielded

4 SNPs, representative of each LD block, that were used as instruments for the cor-

tisol associated loci. This analysis demonstrated that each standard deviation in-

crease in morning plasma cortisol was associated with increased risk of chronic is-

chaemic heart disease (0.32, 95% CI 0.06–0.59) and myocardial infarction (0.21, 95%

CI 0.00–0.43).

This study showed the SERPINA6/ SERPINA1 locus to be associated with as plasma

cortisol and provided evidence of a causal relationship between plasma cortisol and
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CVD phenotypes. However, without understanding the impact of genetic variation

on intermediate phenotypes such as gene expression, it is not possible to describe

mechanistic links between cortisol linked SNPs and CVD. Additionally, is important

to note that while the SERPINA6/ SERPINA1 finding was retained, this remains a

surprising result as cortisol influences the expression of many genes outside of this

single locus.

In this chapter, we provide evidence of associations between cortisol linked SNPs

at the SERPINA6/ SERPINA1 locus and gene expression in both cis and trans. This in-

cludes findings that were presented in the publication of the 2021 CORNET GWAMA8.

2.1.2 Plasma cortisol linked gene expression

The influence of cortisol, as mediated by GR, can be observed across many different

tissue types. The primary goal of this chapter is to describe the impact of cortisol

linked genetic variation upon tissue specific gene expression. The STARNET cohort

is well suited to address the impact of genetic variation across tissue types, given the

availability of multi-tissue gene expression data from ∼600 genotyped individuals.

STARNET itself is an expansion of a prior study, the Stockholm Atherosclerosis

Gene Expression (STAGE) Study, which examined the role of tissue specific gene

expression variation across 114 individuals159. The STAGE authors initially carried

out two way clustering across the transcriptional profiles in STAGE, with the aim of

identifying clusters related to CAD development. This resulted in the identification

of a module of genes represented by LIM domain binding 2 (LDB2), a transcription

co-factor associated with CAD and atherosclerosis159.

In later work, the STAGE authors carried out a global eQTL discovery analy-

sis, identifying 8156 cis-eQTLs across the seven CAD relevant tissues present in the

STAGE cohort160. Since then, STAGE has been used to identify cross-tissue co-expression

networks, validated with data from the Hybrid Mouse Diversity Panel88.

STARNET was established with the aim to link SNPs associated with Cardiometabolic

31



Cis-eQTL discovery and global tissue specific influence of CORNET SNPs

Disease (CMD) to variation in gene expression within a representative cohort of in-

dividuals with a confirmed diagnosis of CAD. In their initial analysis, the STARNET

authors identified 2047 disease associated SNP that overlapped with a STARNET

eQTL, moreover it was demonstrated that the cis-eQTLs identified in STARNET were

enriched for GWAS associations with CAD and Alzheimer’s disease.

The authors were able to identify 562 risk SNPs for CAD and Alzheimer’s disease

that also had cis-eQTL in a STARNET tissue. They also identified correlations be-

tween cis and trans-genes, revealing 37 cis-genes and 994 trans-genes connected in

a cross tissue regulatory network for CAD. The authors followed up by demonstrat-

ing that the trans-genes in this network were enriched for CAD and atherosclero-

sis. Additionally, they identified tissue specific regulatory regions, driven by GWAS

SNPs, including linking variation in coronary artery disease risk gene PCSK9 in vis-

ceral abdominal fat to plasma LDL levels64.

The work described here, has established STARNET and STAGE as important

resources for linking tissue specific gene expression to both phenotypic and genetic

variation. To better characterise the downstream consequences of genetic variation

for plasma cortisol, we used STARNET to link SNPs identified from the CORNET

GWAMA to variation in gene expression across the available tissues in both cis and

trans.

Initially we worked to characterise the impact of genetic variation at the SER-

PINA6/ SERPINA1 locus through a cis-eQTL discovery approach. We then examined

to what extent cis-eQTLs in this region overlapped with cortisol linked genetic vari-

ants from the CORNET GWAMA. Finally we looked to examine the impact of genes

that were trans-associated with these genetic variants across the different tissues in

STARNET, using gene set enrichment to identify any functional similarities within

trans-gene sets.
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2.1.3 Chapter objectives

1. To determine if genetic variation for plasma cortisol is linked to variation in

gene expression at the SERPINA6/ SERPINA1 locus.

2. To identify genes that are trans-associated with genetic variation for plasma

cortisol across STARNET tissues, and to characterise the global transcriptomic

response to cortisol linked SNPs.

3. To investigate the functional impact of cortisol associated trans-genes, using

clustering and gene set enrichment methods.
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2.2 Materials and methods

2.2.1 Datasets

Three major datasets were used over the course of this chapter as described in ta-

ble 2.1. The summary statistics from the CORNET GWAMA were used in this chap-

ter in their processed form (available at https://datashare.ed.ac.uk/handle/

10283/3836)8.

Dataset Full name Number of participants Study type Number of imputed SNPs

STAGE Stockholm Tartu
Atherosclerosis Gene
Expression study

114 Genotype and
Microarray data

909,622

STARNET Stockholm Tartu
Atherosclerosis Re-
verse Networks Engi-
neering Task study

600 Genotype and
RNA sequencing

14,098,064

CORNET CORtisol NETwork
(2021)

25,000 GWAMA 8,452,427

Table 2.1: Summary of datasets used throughout this project.

2.2.2 QC and normalisation of STARNET gene expression

All STARNET genotype and gene expression data obtained for this project had pre-

viously undergone both Quality Control (QC) and normalisation and is described in

full at (Franzen et al, 2016)64.

Gene expression for STARNET tissue samples was measured using RNA-sequencing.

RNA samples with less than 1M uniquely mapped reads were excluded, which re-

moved 12 samples with extremely low read counts. The distribution of read counts

can be found at figure S2.9 and the samples used in the final analysis had between

15-30 million reads. Normalisation was performed in each tissue separately and

counts were adjusted for GC bias and library size using EDAseq (version 1.8.0). Sex

was also confirmed using Y chromosome genes and XIST. Linear regression was

used to correct for age, sex and library protocols. Cross tissue gene expression was
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compared using principal component analysis and hierarchical clustering.

The numbers of samples and genes retained can be seen in Table 2.2. Having

obtained gene expression matrices from Franzen et al, we conducted PCA analysis

to confirm that there were no outliers within the samples (Figure S2.10). Ensembl

Biomart (GRCh37) was used to label transcripts (provided as Ensembl IDs) with;

gene name, chromosome location, gene start and gene end.

Tissue
Number of samples Number of genes

STARNET STAGE STARNET STAGE

Liver 523 77 13875 19610

Skeletal muscle 512 78 12544 19610

Internal mammary artery 529 79 15458 19610

Atherosclerotic aortic root 514 N/A 16214 N/A

Subcutaneous fat 549 63 14120 19610

Visceral abdominal fat 509 88 14965 19610

Whole blood 448 103 12843 19610

Atherosclerotic arterial wall N/A 68 N/A 19610

Table 2.2: Summary of number of samples and genes from both STARNET and STAGE datasets.

2.2.3 eQTL discovery

Genotype Pre-processing

STRANET genotypes were obtained using blood DNA genotyping with the Illumina

Infinium assay. Again quality control was carried out by Franzen et al. The Human

OmniExpressExome-8v1 bead chip was used with GRCh37 and contains 951,117 ge-

nomic markers. QC was performed using PLINK, with a confirmation of self re-

ported sex via heterozygosity rates on X chromosome. Genome wide heterozygosity

per sample was also computed and Hardy-Weinberg equilibrium was computed per

SNP. IMPUTE2 was used to increase number of variants via imputation, using the

1000 Genomes Project phase 1 SNPs.

Following QC, STARNET genotypes required further pre-processing before they
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could be utilised for eQTL discovery (Figure 2.2A). For both STAGE and STARNET

datasets, genotype and gene expression data were contained within matrices. Geno-

type data for each SNP would be presented as either 2, 1 or 0 representing whether

an individual was homozygous, heterozygous or alternative homozygous for a given

SNP. All steps were conducted using Python (version 3.7.4).

Figure 2.2: Pipeline depicting pre-processing steps (A) and analysis (B) for cis-eQTL discovery using
kruX161 with multiple testing correction.

Genotype data were filtered to remove any SNPs with missing data for any indi-

viduals. A further filtering step was undertaken to exclude SNPs that had a Minor

Allele Frequency (MAF) < 5% to avoid biases introduced by the inclusion of single-

tons or rare variants162. An additional filtering step was included to only include

only SNPs within a given window of interest e.g. for cis associations this is defined

as ± 1 Mb of the transcription start/ end point. All of these steps were performed in

Python using the Pandas dataframe library (version 1.2.4).
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Cis-eQTL Discovery and multiple testing correction

Cis-eQTLs were identified using the kruX algorithm161. kruX calculates the Kruskal-

Wallis test statistic for millions of SNP gene pairs simultaneously. The Kruskal-Wallis

test is a non-parametric ANOVA used to determine whether sample groups origi-

nate from the same distribution that has been used previously in genetic association

studies when applied to genotype groups98.

Processed genotype and gene expression data were inputted to kruX as matrices,

using the kruX Python package (Figure 2.2B). This calculated the Kruskal-Wallis test

statistic for each SNP-gene pair in addition to a corresponding p-value. Multiple

testing correction was obtained through the calculation of q-values using the Storey

and Tibshirani method for a given FDR threshold (α)163 using the qvalue Python

package.

When effect size (β-values) are required, the package MatrixeQTL has been used

which identifies eQTLs using linear regression164. This was implemented in R (ver-

sion 3.6.3) and uses the same input as previous described with kruX. A comparison

between kruX and MatrixeQTL output shows a strong correlation between p-values

from both methods (R2 = 0.97) (Figure S2.11).

eQTL discovery results were visualised using the web app of the GWAS visuali-

sation tool LocusZoom165. This plots the genomic location of each SNP at its given

significance level (-log10 p-value).

Global transcriptomic analysis

The global tissue-specific effect on gene expression for SNPs associated with plasma

cortisol at a genome-wide level of significance was depicted using Q-Q plots show-

ing the observed transcriptome-wide SNP-gene associations against the expected

uniform distribution. Deviation from the uniform distribution was tested using the

Kolmogorov Smirnov test statistic and p-value for each SNP.
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Colocalisation

Bayes factor colocalisation analysis was performed in R using the package Coloc69.

For visualisation of the colocalisation event, Linkage Disequilibrium with the lead

SNP was calculated using the package LDlinkR166.

2.2.4 Identification of trans-associated genes

Trans-gene identification Using secondary linkage test

The secondary linkage test (P2) is a likelihood ratio test in the Findr package92 (ver-

sion 1.0.8) that is used to identify associations between a given SNP (E) and a gene

(B) without requiring a linear function. P2 proposes a null hypothesis where E and

B are independent and and alternative hypothesis where E is causal for B (E →B).

Maximum likelihood estimators are then used to obtain a log likelihood ratio (LLR)

between the alternative and null hypothesis (Equation 2.1).

P (E → B) = P (H (P2)
al t | LLR(P2)). (2.1)

The LLR is then converted to the posterior probability of H (P2)
al t with empirical

estimation of the local FDR as a score from 0-1. The input required for this is com-

posed of three matrices: (E) Genotype information for SNPs of interest. (A) Ran-

domly permutated data in the same shape as E. (B) Expression data for all genes in

the given dataset. This can be used to identify genes that are trans-associated with

any given SNP as Findr will return a score for the association for all genes from the

B matrix with build in FDR correction. To obtain the probability of a false positive

within a set of E →B interactions, this was calculated as 1 minus the mean of all pos-

terior probabilities. A P2 score cut off was set to reflect the desired global FDR167.

The output of kruX and Findr P2 were compared (Figure S2.12) and plotted us-

ing the Python plotting package Seaborn, with Findr P2 score against 1-q-value for
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the kruX output. The Spearman’s correlation coefficient was then calculated using

the Python package scipy.stats (version 1.3.0) showing the different methods to be

comparable (R2 = 0.68).

Hierarchical Clustering

Hierarchical clustering was performed using correlation matrices generated from

expression data. The corr() function in Pandas was used to construct correlation

matrices for all genes in a given gene set. These were generated using Pearson’s cor-

relation coefficient for pairwise gene correlations and then plotted using the clus-

termap function in Seaborn to produce clusters represented by heatmap dendro-

grams.

K-means Clustering

Gene-sets were also analysed using a K-means clustering approach through use of

the Python machine learning package SciKit Learn168 (version 0.21.2). Gene ex-

pression data was used to generate clusters based on a given value of K. The data

were then subjected to Principal Component Analysis (PCA) across two compo-

nents, again using SciKit Learn. The output of the PCA was then presented using

the scatterplot function from Seaborn.

Functional annotation and clustering with DAVID

Gene sets were functionally annotated using the Database for Annotation, Visual-

ization and Integrated Discovery (DAVID)169. This web-based application allows

for the generation gene clusters that have been grouped in relation to an enrich-

ment of functional terms, including but not limited to Gene Ontology (GO) terms.

The strength of the gene-term interactions is measured by EASE scores, a modified

Fisher’s exact test. An enrichment score for a given cluster is generated as the geo-

metric mean of all the EASE scores within a cluster that has undergone -log transfor-

39



Cis-eQTL discovery and global tissue specific influence of CORNET SNPs

mation. For all analyses Ensembl Gene IDs were used as the input format for DAVID

as opposed to universal gene symbols.

For the analyses conducted, all of the default annotation options were selected

in addition to: GAD DISEASE, GO TERM BP FAT, GO TERM CC FAT, GO TERM MF

FAT, PUBMED ID, REACTOME PATHWAY, BIOGRID INTERACTIONS and UP TIS-

SUE. Gene sets were then run using DAVID and functionally enriched clusters gen-

erated using high classification stringency. Tissue specific genes from STARNET

RNA-seq datasets were used as background for enrichment (Table 2.2).
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2.3 Results

2.3.1 Identification of SERPINA6 cis-eQTLs in STARNET-liver asso-

ciated with plasma cortisol

Cis-eQTL Discovery at the SERPINA6/ SERPINA1 locus

The CORNET GWAMA identified a peak of 73 SNPs that were associated with plasma

cortisol (p < 5×10-8) at the SERPINA6/ SERPINA1 locus on chromosome 148 (Figure

2.1). Due to the location of the CORNET peak and the role of SERPINA6 as the gene

which encodes CBG, we aimed to identify SNPs associated with plasma cortisol that

also influence SERPINA6 expression.

As this analysis was focused upon SNPs identified in the CORNET GWAMA peak

as opposed to all potential SERPINA6 cis-eQTLs, we restricted the analysis window

to only include SNPs within a 100 Kb of SERPINA6. The Kruskal Wallis test was per-

formed using genotype and gene expression data from STARNET and STAGE for all

SNPs within this window, to infer associations between SNP and gene pairs across

all tissues.

The Kruskal Wallis test statistic was calculated for each SNP gene combination

of all 580 SNPs in STARNET and 72 SNPs in STAGE. A cis-eQTL peak was identified

for SERPINA6 in liver, the predominant tissue for SERPINA6 expression150. All SNP-

SERPINA6 associations for both STARNET (Figure 2.3A) and STAGE (Figure 2.3B)

were plotted in relation to their genomic location and the strength of the association

and compared to the original CORNET peak for plasma cortisol variation.

Identification of high confidence SERPINA6 cis-eQTLs in STARNET-liver

Following correction for multiple testing, 32 cis-eQTLs for SERPINA6 were identi-

fied in STARNET-liver at a 5% FDR threshold (q ≤ 0.05). These SERPINA6 cis-eQTLs

were then filtered to include only SNPs which were also at genome wide signifi-
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Figure 2.3: Cis-eQTL discovery for SERPINA6 cis-eQTLs in STARNET-liver. (A) LocusZoom plot
showing genomic loci of given SNPs against Kruskal Wallis p-value (-log10 p-value) for an eQTL
analysis in liver for all SNPs within 100 Kb of SERPINA6 in STARNET-liver. Squares represent SNPs
(q ≤ 0.05) that are also at genome wide significance in CORNET (p ≤ 5×10-8). (B) LocusZoom plot
showing cis-eQTLs in STAGE-liver. (C) Genotypic effect of lead SERPINA6 cis-eQTL in
STARNET-liver, rs2736898, on SERPINA6 gene expression in liver.

cance in CORNET (p ≤ 5×10-8). This resulted in the identification of 21 cis-eQTLs

for SERPINA6 which were also associated with variation for plasma cortisol (Table

2.3). No cis-eQTLs for SERPINA6 were identified in any other STARNET tissue. The

lead SERPINA6 cis-eQTL identified was the SNP rs2736898, with the alternate allele

C which exerted a negative effect on SERPINA6 expression in liver (q = 0.00015) (Fig-

ure 2.3C). This SNP was strongly associated with plasma cortisol (p = 7.03×10-14). No

cis-eQTLs for SERPINA6 in liver were identified in GTEx, the most comprehensive

public eQTL dataset. However the lead cis-eQTL, rs2736898, was present in GTEx as

a cis-eQTL for SERPINA6 in transverse colon (p = 0.0000033)66.

It is also notable that of the 21 SNPs identified as being associated with SER-

PINA6 expression and plasma cortisol, 16 of these were found within the SERPIN

LCR, located within the region ∼8Kb upstream of SERPINA1144. These LCR located
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SNP Kruskal Wallis p-value q-value CORNET p-value Findr P2 score LCR

rs2736898 40.682 1.465E-09 0.000153 7.026E-14 0.99 TRUE

rs3762132 39.246 3.00E-09 0.000304 1.566E-13 0.99 TRUE

rs59036614 38.457 4.46E-09 0.000441 9.494E-14 0.99 TRUE

rs2749529 38.414 4.56E-09 0.000445 9.917E-14 0.99 TRUE

rs2013150 38.345 4.72E-09 0.000445 7.124E-14 0.99 TRUE

rs2749527 38.340 4.73E-09 0.000445 1.747E-13 0.99 TRUE

rs941594 38.049 5.47E-09 0.000508 1.454E-13 0.99 TRUE

rs2736899 37.939 5.78E-09 0.000522 9.513E-14 0.99 TRUE

rs2749530 37.749 6.35E-09 0.000551 1.399E-13 0.99 TRUE

rs1243171 37.441 7.41E-09 0.0006350 2.022E-13 0.99 TRUE

rs1243173 36.559 1.15E-08 0.000947 1.528E-13 0.99 TRUE

rs2749539 28.667 5.96E-07 0.0342 3.043E-08 0.95 TRUE

rs4491436 28.297 7.17E-07 0.0381 5.97E-19 0.98 TRUE

rs718187 28.297 7.17E-07 0.0381 4.52E-19 0.98 TRUE

rs9989237 28.297 7.17E-07 0.0381 2.157E-19 0.98 TRUE

rs12589136 28.297 7.17E-07 0.0381 3.226E-19 0.98 FALSE

rs6575415 28.297 7.17E-07 0.0381 2.97E-19 0.98 FALSE

rs2281518 28.297 7.17E-07 0.0381 4.579E-19 0.98 FALSE

rs941599 28.297 7.17E-07 0.0381 4.406E-19 0.98 FALSE

rs4905187 28.297 7.17E-07 0.0381 7.338E-19 0.98 TRUE

rs7161521 28.297 7.17E-07 0.0381 3.073E-19 0.98 FALSE

Table 2.3: Cis-eQTLs (q-value ≤ 0.05) identified for SERPINA6 that were at genome wide
significance in CORNET (p-value ≤ 5×10-8) and corresponding P2 score.

SNPs are highlighted in table 2.3. Additionally the SERPINA6 cis-eQTL rs9989237

(q = 0.0381) is associated with multiple SERPIN genes and other cis-genes across

multiple tissues in the FIVEx database, a browser that combines data from multi-

ple eQTL datasets170. This may highlight the presence of a LCR within this region

providing a biological basis underpinning the observed associations with this SNP.

Two cis-eQTLs for SERPINA6, rs941598 and rs996050, were identified in STAGE-

liver at the same 5% FDR threshold. However, neither demonstrated an association

with plasma cortisol at the level of genome wide significance (p=1.23×10-07 and

1.05×10-07 respectively). Although, given that individuals were less densely geno-

typed in STAGE compared to STARNET, many SNPs were unavailable for analysis,

including rs2736898.

Cis associations with other genes were also examined in the surrounding region,

to confirm that the variation for plasma cortisol was mediated through SERPINA6
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and not another gene. Cis-eQTLs were identified for SERPINA10 in the liver and

SERPINA1 in the blood (Figure S2.16), however these cis-eQTLs were not present in

the CORNET GWAMA at genome wide significance, providing no evidence to link

these genes to a role in mediating genetic variation for plasma cortisol.

Identification of cis-eQTLs for SERPINA6 using Findr linkage test

The secondary linkage test (P2) from the Findr package was used in order to test for

consistency between methods for cis-eQTL discovery. This likelihood ratio test cal-

culates the Bayesian posterior probability for a given SNP-gene interaction. Using

P2 it was possible to validate all of the SERPINA6 cis-eQTL interactions identified

using the Kruskal Wallis test within a 5% local precision FDR threshold (P2 ≥ 0.95)

(Table 2.3).

Colocalisation

Colocalisation is used to determine if separate signals from two association studies,

contain a shared causal variant. This is important while taking into account factors

such as LD, to identify any variants that colocalise through the integration of eQTL

and GWAS signals69.

To determine if the signals identified for SERPINA6 cis-eQTLs in liver and SNPs

associated with plasma cortisol are driven by the same causal variant, Bayes fac-

tor colocalisation analysis was performed while accounting for allelic heterogeneity

(Figure 2.4). The probability of both traits sharing a causal variant was low (40.6%)

when examining all SNPs within 100Kb of SERPINA6. However, when examining

each LD block individually, the block represented by rs2736898 returns a 99.2%

probability of shared causal variant in this region (Table S2.6).

44



Cis-eQTL discovery and global tissue specific influence of CORNET SNPs

Figure 2.4: Scatterplot showing colocalisation of joint signal from CORNET GWAMA and SERPINA6
cis-eQTLs from STARNET-liver. Includes all SNPs within 100 Kb of SERPINA6 that were present in
both datasets (n=535). Colour bar indicates degree of LD with rs2736898. Formal colocalisation
analysis with Coloc indicates 99.2% probability of the presence of a shared causal variant within LD
block 2 mediating GWAMA and SERPINA6 cis-eQTL signal.

2.3.2 Cortisol associated SNPs mediate global tissue specific effects

We assessed the global transcriptional impact of genetic variation for plasma corti-

sol across all STARNET tissues. In particular, we aimed to address the role of each

LD block that composed the CORNET peak. The CORNET GWAMA peak spanning

the SERPINA6/ SERPINA1 locus was composed of 4 LD blocks, each represented by

a lead SNP. Of the 21 cis-eQTLs for SERPINA6, that were also associated with plasma

cortisol for the CORNET GWAMA (p < 5×10-8), 12 were present in LD block 2, and 9

were present in LD block 4, including the representative SNPs for these blocks. The

lead SERPINA6 cis-eQTL in STARNET liver, rs2736898, was identified as the repre-

sentative SNP for LD block 2 (p = 7.026×10-14).

The global effect on tissue-specific gene expression of representative SNPs from

each LD block was assessed using the distribution of transcriptome-wide SNP-gene

associations. For these SNP-gene associations we used Findr P2, however with the

p-values rather than posterior probabilities which could be plotted logarithmically

as Quantile-Quantile plots (Figure S2.13). For all SNP-gene associations per tissue,

deviation from the expected uniform distribution of p-values was calculated using
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SNP eQTL p-value eQTL q-value CORNET_p-value Representative SNP LD block

rs2736898 1.465E-09 0.00015 7.026E-14 rs2736898 2

rs3762132 3.01E-09 0.00030 1.566E-13 rs2736898 2

rs59036614 4.459E-09 0.00044 9.494E-14 rs2736898 2

rs2749529 4.555E-09 0.00044 9.917E-14 rs2736898 2

rs2749527 4.726E-09 0.00044 1.747E-13 rs2736898 2

rs2013150 4.716E-09 0.00044 7.124E-14 rs2736898 2

rs941594 5.466E-09 0.00051 1.454E-13 rs2736898 2

rs2736899 5.778E-09 0.00052 9.513E-14 rs2736898 2

rs2749530 6.352E-09 0.00055 1.399E-13 rs2736898 2

rs1243171 7.408E-09 0.00064 2.022E-13 rs2736898 2

rs1243173 1.152E-08 0.00095 1.528E-13 rs2736898 2

rs2749539 5.958E-07 0.03418 3.043E-08 rs2736898 2

rs4491436 7.169E-07 0.03810 5.97E-19 rs9989237 4

rs718187 7.169E-07 0.03810 4.52E-19 rs9989237 4

rs9989237 7.169E-07 0.03810 2.157E-19 rs9989237 4

rs12589136 7.169-07 0.03810 3.226E-19 rs9989237 4

rs6575415 7.169E-07 0.03810 2.97E-19 rs9989237 4

rs2281518 7.169E-07 0.03810 4.579E-19 rs9989237 4

rs941599 7.169E-07 0.03810 4.406E-19 rs9989237 4

rs4905187 7.169E-07 0.03810 7.338E-19 rs9989237 4

rs7161521 7.169E-07 0.03810 3.073E-19 rs9989237 4

Table 2.4: Distribution of SERPINA6 cis-eQTL across CORNET GWAMA LD blocks.

the Kolmogorov-Smirnov test(Figure S2.14).

LD block 2 was of particular interest, due to its role in harbouring the strongest

cis-eQTL for SERPINA6 in STARNET liver. When analysing the distribution of P2 p-

values, the strongest tissue-specific effects were observed in visceral abdominal fat,

subcutaneous fat and liver (Figure 2.5). In all cases the allele associated with higher

plasma cortisol in the GWAMA was the allele associated with higher SERPINA6 ex-

pression in STARNET (Figure S2.15). Inflation of p-values is noticeable, particularly

in STARNET-liver. This may have arisen due to unaccounted covariates within the

population structure171.
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Figure 2.5: Global tissue specific effects on gene expression for rs2736898 represented as Q-Q plots
for genes in liver, subcutaneous fat and visceral abdominal fat describing observed p-values vs
those expected by chance. Deviation from expected uniform distribution described by
Kolmogorov-Smirnov test p-value (Ks-test).

2.3.3 Identification of genes trans-associated to CORNET SNPs

Cortisol trans-genes identified in multiple STARNET tissues

Having identified 21 SNPs that were strongly associated with changes in SERPINA6

expression in liver and variation for plasma cortisol levels, we next aimed to identify

specific genes that were trans-associated with cortisol associated SNPs outside of

the SERPINA6/ SERPINA1 locus. Findr P2 was used to identify sets of trans-genes by

testing SNP-gene pairs between all cortisol associated SNPs at genome wide signif-

icance (p ≤ 5×10-8) and every gene in the STARNET dataset across all tissues. We

then imposed a FDR threshold to yield tissue specific gene sets.

As trans-gene associations are expected to be weaker than their cis counterparts,

a lower threshold of 15% FDR was used to compensate for an increased false neg-

ative rate. This approach was used to identify distal genes, including those on dif-

ferent chromosomes, that were associated with the SNPs linked to plasma corti-

sol. This approach yielded 263 trans-associated genes across seven STARNET tis-

sues (Figure 2.6, Table S2.8), composed of 704 individual trans-associations as many

trans-genes were associated with more than one SNP (Figure S2.17).

The tissues with the greatest number of unique trans-genes were subcutaneous

fat, visceral abdominal fat and liver, with a combined total of 157 unique trans-genes
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and total of 422 total associations (FDR = 15%). FDR was calculated per tissue as the

mean of the local precision FDR (P2 scores) (Table S2.7).

Figure 2.6: Number trans-genes identified across different STARNET tissues. Associations with 73
SNPs that are at genome wide significance in CORNET (p ≤ 5×10-8) for a given trans threshold (FDR
= 15%)

An examination of the trans-associations for visceral adipose at this threshold

revealed that the majority of trans-genes were associated with the same SNP, rs2005945.

Although not the strongest SNP identified in the CORNET GWAMA, rs2005945 is

at genome wide significance (p = 9.76×10-9) and has a small but positive effect on

plasma cortisol (effect size = 0.0602).

Functional enrichment of tissue specific trans-gene sets

Functional enrichment methods were used to determine biological functions of cor-

tisol associated tissue specific trans-gene sets. The Database for Annotation, Visual-

ization and Integrated Discovery (DAVID)169 allows for the annotation of genes and

generation of gene-sets based upon common functional enrichment terms.

Gene set enrichment was carried out for trans-genes in liver, visceral abdominal

fat and subcutaneous fat, as these tissues contained the greatest number of trans-
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associations with cortisol associated SNPs at a 15% FDR threshold. Each tissue gene

set was tested in turn, against the background of the total number of genes per tis-

sue that were originally tested for trans-associations. Enriched clusters were filtered

with an enrichment score ≥ 1 for each gene set and summarised by a common term

(Table 2.5). Full cluster breakdown can be found at Table S2.9.

Tissue Enrichment score Cluster

liver

1.24 Regulation of cell signalling

1.19 GTPase regulation

1.00 Nucleotide binding

subcutaneous fat
1.99 Desmosome

1.29 Nucleotide metabolic process

visceral abdominal fat

1.51 Cytoplasmic side of plasma membrane

1.34 Endoplasmic reticulum

1.11 Organelle organisation

1.05 Phospholipid metabolic process

Table 2.5: Function enrichment of CORNET trans-genes using DAVID for top tissues. Clusters have
been summarised by a single term.

In liver, the strongest cluster identified was related to regulation of cell signalling,

including GO terms for regulation of cell communication (p = 0.05) and regulation

of signal transduction, however following multiple testing correction these associ-

ations are no longer retained. The strongest cluster across all tissues was a desmo-

some cluster in subcutaneous fat (p = 0.001). Desmosomes are composed of in-

termediate filaments and link to the cytoskeleton, they are involved in cell to cell

adhesion. Several clusters were identified in visceral abdominal fat, including clus-

ters involving the cell membrane (p = 0.01) and organelle organisation (p = 0.01),

however again following multiple testing correction none of these associations are

retained.

Hierarchical clustering of CORNET associated trans-genes

To further investigate the role of these trans-genes, a clustering approach was utilised

for each trans-gene set using gene expression data from STARNET. For each gene

set, a correlation matrix was generated for each gene pair across all samples. Hi-
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erarchical clustering was then performed and presented as heatmap dendrograms

(Figure 2.7).

Figure 2.7: Hierarchical clustering of cortisol associated trans-genes in (a) liver (b) subcutaneous fat
and (c) visceral abdominal fat.

From visualising the heatmap for visceral abdominal fat trans-genes, the tissue

with the largest number of trans-genes, it was possible to observe two large clus-

ters of trans-genes identified based on a positive expression signal. Clustering for

both liver and subcutaneous fat trans-genes was poorly defined, however using this

approach it was not possible to quantify differences between clusters.

K-means clustering of CORNET associated trans-genes

Having identified visible clusters using hierarchical clustering methods, we decided

to use K-means to extract groups in a more quantitative way. K-means clustering

is a machine learning method used to partition a set of observations into a given

number of clusters, denoted by K. As with hierarchical clustering, expression data

for each trans gene set were used and each gene was assigned to the K cluster with

the closest mean to its own gene expression. As before, K-means clustering was

performed for liver, subcutaneous and visceral adipose fat as these had the greatest

number or trans-genes and strongest relationship with glucocorticoid biology.

Following clustering of genes, principal component analyses (PCA) were per-

formed to transform the high dimensional expression data for all patients across

two principal components. For each gene set, K was initially set to the lowest pos-
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sible value (K=2) and gradually increased to increase the specificity of the classifi-

cation until discrete clusters observed from the PCA were no longer being retained.

Clustering was not observed for either subcutaneous fat or liver trans-genes.

Visceral abdominal fat again stood out as the strongest candidate in the strength

of the K-means clusters, where two clusters of genes could be observed. Gene set

enrichment was performed in each individual cluster to identify any functional dif-

ference between clusters (enrichment score ≥ 1). Out of the two clusters, no func-

tional enrichment was observed for K0 however enrichment was observed in K1

at higher levels than when looking at all trans-genes combined. The functional

cluster with the highest enrichment score was related to the mitotic cell cycle (p

= 0.003), other clusters include terms related to regulation of organelle organisation

(p = 0.007) and cytoplasmic side of cell membrane (p = 0.02) (Figure S2.10), however

these enriched terms are no longer retained when correcting for multiple testing.

Figure 2.8: K-means clustering of cortisol associated trans-genes in (a) liver (b) subcutaneous fat
and (c) visceral abdominal fat

Following the identification and appraisal of differential clustered genes within

each tissue set, visceral adipose not only contained the created number of trans-

associated genes but also showed the greatest level of structure within the gene set.
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2.4 Discussion

2.4.1 Genetic variation for plasma cortisol is mediated through CBG

The identification of 21 high confidence cis-eQTLs for SERPINA6 that were also at

genome wide significance in CORNET suggests that CBG biology may play a role

in mediating genetic variation for plasma cortisol. As SERPINA6 encodes CBG this

could shed light on a functional mechanism for how genetic variation may influence

plasma cortisol levels.

As CBG binds cortisol in the blood for transport to other tissues, this could ac-

count for any cross-tissue effects of plasma cortisol variation. Although SERPINA6 is

only expressed in liver, its influence is global as CBG is exported to the bloodstream

and therefore exerts an effect upon all tissues. As GR is ubiquitously expressed and

interacts with a vast range of targets, this can account for any pleiotropic effects that

may be associated with plasma cortisol variation.

It is important to account for other potential interactions with the significant

CORNET SNPs that could act as vehicles for the plasma cortisol variation to the ex-

pression level. SERPINA6 was initially considered due to the proximity of its ge-

nomic loci to the CORNET peak on Chromosome 14 and as it already had a defined

role within glucocorticoid biology. In addition, cis-eQTL interactions are typically

stronger than trans interactions. The nominal threshold of 1 Mb that is set for cis-

interaction is done so as this is what is assumed to be the upper distance limit for

chromatin interactions where an eQTL could have a physical interaction with its

target gene172. It is also notable that 16 of the 21 cis-eQTLs for SERPINA6 were lo-

cated in the SERPIN LCR, a previously described cis-regulatory region for control of

SERPIN genes. Genetic variation in this region may lead to the disruption of pre-

viously described liver specific transcription factors binding sites143, leading to the

observed changes in SERPINA6 expression in STARNET liver.

Although cis-eQTL interactions were identified for other genes within the 100
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Kb window containing the CORNET peak, these were able to be excluded, as these

could not account for plasma cortisol variation. High confidence cis-eQTLs (q ≤
0.05) for both SERPINA10 in Liver and SERPINA1 in the blood were identified within

this region, however of those cis-eQTLs that were also in CORNET, none crossed the

threshold for genome wide significance. As there were no cis-eQTLs for SERPINA1

that were associated with genetic variation for plasma cortisol, this suggests that it

is indeed CBG as opposed to α-1 antitrypsin that is responsible for mediating the

genetic effect on cortisol.

The identification of cis-eQTLs for SERPINA6 in liver has not been previously

observed in other large eQTL datasets such as GTEx. Although, GTEx does contain

cis-eQTLs for SERPINA6, these are in tissues other than liver, the tissue where SER-

PINA6 is most highly expressed. The eQTLs identified from GTEx are from from

post-mortem donors, which may also have influenced gene expression levels, miss-

ing key associations. This highlights the importance of selecting a representative

dataset when conducting such analyses and the selection of appropriate, especially

considering that liver was the only STARNET tissue where SERPINA6 cis-eQTLs were

identified. There are a number of healthy controls in the STARNET dataset, however

this number was too small to conduct eQTL discovery and compare the differences

between case and control populations.

Outside of the previously stated advantages, the selection of STARNET as a co-

hort for measuring the genetic influence of plasma cortisol may have introduced

some biases. Although genotypes are fixed, gene expression varies in response to

both endogenous and exogenous factors. Whole blood samples were taken pre-

operatively, all other tissues including liver were taken during a coronary artery by-

pass grafting procedure. The human stress response to surgery has been well char-

acterised and results in stimulation of the HPA axis leading to high levels of cortisol

in the blood both during and post-surgery173. In addition to surgical stress there is

also anticipatory stress which may result in elevated cortisol levels. As the individ-

uals in the STARNET cohort will have higher cortisol levels as a result of coronary

artery bypass grafting, it is unclear if gene expression levels would be representative
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of a healthy population, given evidence of reduced cortisol clearance in patients

suffering from critical illness174.

An additional issue is that although GR mediates changes through transcription,

it is unclear what affect these variants are having upon CBG protein levels. This is

due to a lack of proteomic data in the STARNET cohort. Although SERPINA6 ex-

pression can be thought of as a proxy for CBG levels, not all SERPINA6 mRNA will

be translated, so it is unclear how much of an effect these variants will have on the

protein level.

It is important to highlight some of the shortcomings of the CORNET GWAMA,

which underpins this thesis, as any issues in study design may have impacted any

downstream analyses. Cortisol measurements obtained in the CORNET GWAMA

are defined as morning cortisol measurements, however these cover a time period

between wake and 11am8. The impact of inter-individual variation in diurnal rhythms

and wake times may lead to comparisons between individuals that are not reflec-

tive of variation in basal levels of plasma cortisol between individuals. An improved

study design could involve cortisol measurements taken across multiple time points

throughout the period between wake and 11am to account for inter-individual vari-

ation.

2.4.2 Trans-effects of cortisol associated SNPs predominantly ob-

served in liver and fat

The identification of genes that are trans associated with cortisol associated SNPs

is a crucial step in understanding the downstream effects of genetic variation for

plasma cortisol. If CBG is the vehicle through which plasma cortisol variation exerts

its influence, it is through the changes in expression of these downstream genes that

the tissue specific consequences for this variation are mediated.

The tissues with the greatest number of trans-genes identified were liver and

both subcutaneous and visceral abdominal fat. It is interesting to note that these
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tissues all play a crucial role in glucocorticoid biology. The stimulation of gluco-

neogenesis occurs mainly within the liver and this is stimulated by glucocorticoids,

including cortisol175. Cortisol plays a role in fat through the stimulation of the ex-

pression of genes involved in adipocyte metabolism176. In extreme cases this can

lead to clinical consequences. Cushing’s Syndrome results in high blood pressure

and obesity and occurs in response to chronically increased levels of plasma corti-

sol177.

Functional annotation clustering across these tissues has identified trends in the

genes that are associated with variation for plasma cortisol. In liver, this resulted

in an enrichment of genes associated with the regulation of cell signalling and GT-

Pase regulation. As the effects of GR are ubiquitous these effects are often mediated

throughout and between cells. Cell signalling is important in this process.

Visceral abdominal fat contained the highest number of trans-genes out of all of

the tissues studied. When performing functional clustering on all visceral adipose

trans-genes together, functional clusters related to the cell membrane, organelle or-

ganisation and the endoplasmic reticulum were identified. K-means clustering re-

vealed a difference in functional clustering between k-clusters, where one cluster

was enriched with terms related to organelle organisation, cell membrane and new

clusters such as cell cycle and vesicle trafficking.

A 15% FDR threshold was used to call trans-gene sets, as trans-associations tend

to be weaker than their cis counterparts. Therefore setting a more lenient thresh-

old protects against a high false negative rate, however given the high number of

trans-association, with a 15% FDR threshold, a number of false positive findings

will inevitably be introduced. This is counteracted in subsequent chapters, by scru-

tinising key genes within these trans-gene sets that are suspected drivers of genetic

variation for cortisol.

As the primary transcriptional signal at the CORNET GWAMA locus appears to

be driven by changes in CBG expression, the possibility exists that the trans-effects

observed in extra-hepatic tissues are being predominantly driven by changes in
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CBG levels as opposed to variation in cortisol acting through CBG. HPA adaptation

is crucical for regulating the genetic impact of plasma cortisol, however a recent ro-

dent model found only the transporter ABCB1 to be responsible for mediating HPA

adaptation178.

As it is a relatively small proportion of the heritability of plasma cortisol that is

explained by the SERPINA6/ SERPINA1 locus, it is worth considering that the trans-

gene effect observed is in fact mediated by CBG acting independently of plasma

cortisol. This could be indicative of a new role of CBG that is not related to the trans-

port of plasma cortisol, however future functional experiments would be required

to either substantiate or refute this claim.
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2.5 Conclusion

By using a systems genetics approach to examine the impact of genetic variation for

plasma cortisol upon downstream gene expression, it has been possible to investi-

gate how the effects of cortisol linked genetic variation are mediated. The identifi-

cation of SNPs that are associated with both variation for plasma cortisol and CBG

expression highlights a mechanism by which genetic variation at the genomic level

can have tissue specific influences through the machinery of glucocorticoid biol-

ogy that is ubiquitous across tissues. By expanding these associations across the

genome, it has been possible to identify trans effects of cortisol variation, with a

specific emphasis in hepatic and adipose tissues. This chapter provides a founda-

tion for understanding the role of cortisol associated genetic variation in mediating

tissue specific changes in gene expression.
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2.6 Supplementary data

Figure 2.9: Distribution of RNA-seq read counts across all STARNET tissues.

LD_block nsnps PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf

LD1 4 4.16E-05 7.82E-07 0.259387 0.004138 0.736433

LD2 13 4.81E-14 1.55E-10 2.92E-06 0.008404 0.991593

LD3 2 5.14E-05 1.34E-06 0.047832 0.000298 0.951817

LD4 52 2.24E-17 5.87E-16 0.00038 0.008972 0.990648

All_SNPs 535 9.76E-18 3.48E-14 0.000167 0.594 0.406

Table 2.6: Analysis using Coloc, a Bayesian test for colocalisation. Coloc Approximate Bayes Factor
Colocalisation Analysis (ABF) return 5 hypothesis tests to determine if two genetic association
signals share the same causal variant. H0.abf: neither trait has a genetic association in the region,
H1.abf: only cis-eQTL has a genetic association in the region. H2.abf: only GWAMA has a genetic
association in the region, H3: both traits are associated, but with different causal variants. H4: both
traits are associated and share a single causal variant. This test assumes a single shared causal
variant for both signals. Posterior probability (PP) of a shared causal variant is low when examining
all SNPs together (40.6%) but increases in certain LD blocks when examined individually. Strongest
signal is present in LD blocks 2 (99.2%) and 4 (99.1%).
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Figure 2.10: Principal component analysis of gene expression samples across all STARNET tissues.

Tissue 10% FDR 15% FDR

LIV 0.81 0.72

SKLM 0.87 0.72

AOR 0.85 0.79

MAM 0.82 0.72

VAF 0.8 0.87

SF 0.83 0.73

BLOOD 0.81 0.71

Table 2.7: Tissue specific local precision FDR (Findr P2 scores) used to establish FDR thresholds for
trans-gene sets.

59



Cis-eQTL discovery and global tissue specific influence of CORNET SNPs

Figure 2.11: Comparison of -log10 p-values for SERPINA6 cis-eQTLs calculated using Linear
regression vs Kruskal Wallis. Spearman’s R = 0.97.

Figure 2.12: Comparison of eQTL disocvery using KruX vs Findr secondary linkage test (P2) method
for SERPINA6 and SERPINA10 in STARNET-liver. Spearman’s R = 0.68
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Figure 2.13: Quantile-quantile plot of tissue-specific SERPINA6 expression according to each LD
block

Figure 2.14: Kolmogorov-Smirnov test for SERPINA6 expression of the lead SNP in each LD block in
multiple tissues
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Figure 2.15: Magnitude and allele-specific effects of lead SNP in each LD block on SERPINA6
expression in STARNET-liver

Figure 2.16: LocusZoom plots showing genomic loci of given SNPs against measure of significance
(-log10 (p-value)). (a) eQTL analysis for STAGE-Blood samples for SERPINA1 (p ≤ 1) (n=580). (B)
eQTL analysis for STARNET-Liver samples for SERPINA10 (p ≤ 1) (n=580)
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Figure 2.17: Number trans-associations identified across different STARNET tissues. Associations
with 73 SNPs that are at genome wide significance in CORNET (p ≤ 5×10-8) for a given trans
threshold (P2 ≥ 15% FDR)
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Gene name Ensembl Gene ID Top SNP P2 score Tissue Number of associations

TNC ENSG00000041982 rs7146221 0.980 AOR 1

AL139147.1 ENSG00000248458 rs1950652 0.952 AOR 11

RP11-844P9.3 ENSG00000251667 rs877081 0.880 AOR 10

ZSCAN2 ENSG00000176371 rs3748319 0.863 AOR 4

LINC01021 ENSG00000250337 rs3790035 0.860 AOR 3

DBF4 ENSG00000006634 rs12590834 0.853 AOR 10

SLC25A34 ENSG00000162461 rs2749529 0.849 AOR 1

ACAA2 ENSG00000167315 rs1950652 0.846 AOR 4

C1QC ENSG00000159189 rs877081 0.835 AOR 1

CD6 ENSG00000013725 rs12590834 0.833 AOR 1

FAM229B ENSG00000203778 rs9989237 0.832 AOR 10

GLA ENSG00000102393 rs12590834 0.817 AOR 1

C8orf59 ENSG00000176731 rs8015996 0.812 AOR 3

ALS2CL ENSG00000178038 rs4283161 0.801 AOR 1

TAPT1 ENSG00000169762 rs2749529 0.792 AOR 1

RBM17 ENSG00000134453 rs1243171 0.996 Blood 10

CEP164 ENSG00000110274 rs1243171 0.996 Blood 11

DONSON ENSG00000159147 rs2281517 0.969 Blood 12

CENPBD1 ENSG00000177946 rs3790035 0.957 Blood 3

ZC3H14 ENSG00000100722 rs3819333 0.947 Blood 8

ARHGAP32 ENSG00000134909 rs4283161 0.941 Blood 1

PRPF6 ENSG00000101161 rs4905194 0.937 Blood 8

ZNF555 ENSG00000186300 rs3819333 0.926 Blood 7

GTF2F1 ENSG00000125651 rs3762130 0.911 Blood 7

CHAC2 ENSG00000143942 rs2749539 0.897 Blood 1

PNPO ENSG00000108439 rs12590834 0.878 Blood 2

TUBG1 ENSG00000131462 rs4990242 0.865 Blood 2

RPL23AP7 ENSG00000240356 rs67994395 0.863 Blood 1

SBDS ENSG00000126524 rs4283161 0.851 Blood 1

ARHGAP12 ENSG00000165322 rs6575415 0.850 Blood 9

IPO7 ENSG00000205339 rs718187 0.840 Blood 9

ADAMTS6 ENSG00000049192 rs4283161 0.837 Blood 1

ASAH1 ENSG00000104763 rs4990242 0.836 Blood 1

TLR5 ENSG00000187554 rs941594 0.826 Blood 1

KANK2 ENSG00000197256 rs4283161 0.816 Blood 1

TTC1 ENSG00000113312 rs67994395 0.806 Blood 10

SYF2 ENSG00000117614 rs113375097 0.789 Blood 1

CD27-AS1 ENSG00000215039 rs877081 0.786 Blood 1

USP35 ENSG00000118369 rs877081 0.786 Blood 1

BRICD5 ENSG00000182685 rs877081 0.786 Blood 1

CAMK2N1 ENSG00000162545 rs877081 0.786 Blood 1

TRAP1 ENSG00000126602 rs35854995 0.784 Blood 1

NPC2 ENSG00000119655 rs877081 0.784 Blood 1

ARL4A ENSG00000122644 rs877081 0.780 Blood 1

TTF2 ENSG00000116830 rs877081 0.779 Blood 1

NDRG3 ENSG00000101079 rs877081 0.772 Blood 1

SERPINA1 ENSG00000197249 rs877081 0.770 Blood 3
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RSAD1 ENSG00000136444 rs877081 0.766 Blood 1

DGKZP1 ENSG00000179611 rs877081 0.765 Blood 1

GUF1 ENSG00000151806 rs877081 0.759 Blood 1

LINC00152 ENSG00000222041 rs11620777 0.742 Blood 1

TMEM260 ENSG00000070269 rs4905194 0.731 Blood 7

SERPINA6 ENSG00000170099 rs3762132 0.999 LIV 24

YBX3 ENSG00000060138 rs56045385 0.976 LIV 3

HCFC1R1 ENSG00000103145 rs56045385 0.965 LIV 14

HHAT ENSG00000054392 rs3762132 0.955 LIV 7

SYT12 ENSG00000173227 rs11622665 0.952 LIV 1

VILL ENSG00000136059 rs67994395 0.952 LIV 1

MRO ENSG00000134042 rs3762132 0.944 LIV 3

SHQ1 ENSG00000144736 rs1950652 0.908 LIV 8

SLC26A1 ENSG00000145217 rs2736898 0.906 LIV 3

CCDC39 ENSG00000145075 rs56045385 0.905 LIV 14

CPEB2 ENSG00000137449 rs4905194 0.893 LIV 1

TMED9 ENSG00000184840 rs4905194 0.893 LIV 25

THAP5 ENSG00000177683 rs2749539 0.891 LIV 1

NAB2 ENSG00000166886 rs3762127 0.889 LIV 9

FOXN2 ENSG00000170802 rs2013150 0.888 LIV 1

TWF1P1 ENSG00000178082 rs2013150 0.888 LIV 1

FANCL ENSG00000115392 rs35854995 0.883 LIV 4

CNKSR2 ENSG00000149970 rs8022616 0.873 LIV 1

LRCH3 ENSG00000186001 rs8022616 0.873 LIV 1

RBM19 ENSG00000122965 rs4283161 0.872 LIV 2

FJX1 ENSG00000179431 rs4905194 0.871 LIV 5

TOR4A ENSG00000198113 rs3762127 0.860 LIV 5

PPP1R16A ENSG00000160972 rs4990242 0.857 LIV 1

MUT ENSG00000146085 rs12590834 0.835 LIV 11

TIA1 ENSG00000116001 rs67994395 0.834 LIV 3

YIPF2 ENSG00000130733 rs4283161 0.833 LIV 1

RDX ENSG00000137710 rs2736898 0.814 LIV 1

TSPAN15 ENSG00000099282 rs8022616 0.805 LIV 1

CCDC25 ENSG00000147419 rs2281517 0.803 LIV 1

ALG5 ENSG00000120697 rs4283161 0.787 LIV 1

EIF3H ENSG00000147677 rs4990242 0.786 LIV 1

PCSK5 ENSG00000099139 rs2736898 0.777 LIV 1

TLR2 ENSG00000137462 rs2749527 0.763 LIV 1

DNM1L ENSG00000087470 rs2749527 0.762 LIV 1

NUCB2 ENSG00000070081 rs2749527 0.762 LIV 1

PTPN12 ENSG00000127947 rs2749527 0.762 LIV 1

MAPK11 ENSG00000185386 rs35854995 0.761 LIV 1

ZNF649 ENSG00000198093 rs2749527 0.754 LIV 1

RABEP1 ENSG00000029725 rs2749527 0.748 LIV 1

EPB42 ENSG00000166947 rs1956179 0.728 LIV 1

MYO9A ENSG00000066933 rs3762132 0.726 LIV 1

PSMA7 ENSG00000101182 rs1956179 0.723 LIV 1

TALDO1 ENSG00000177156 rs2749527 0.721 LIV 1
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FAM127B ENSG00000203950 rs11620763 0.961 MAM 3

MTND5P12 ENSG00000251544 rs11620763 0.954 MAM 3

RP11-846F4.1 ENSG00000266529 rs11620777 0.953 MAM 3

ZSCAN16-AS1 ENSG00000269293 rs113375097 0.944 MAM 1

GTPBP3 ENSG00000130299 rs11620777 0.929 MAM 3

RARRES1 ENSG00000118849 rs11620777 0.925 MAM 1

SSH1 ENSG00000084112 rs11620777 0.925 MAM 3

CACYBP ENSG00000116161 rs7141205 0.908 MAM 3

C1orf52 ENSG00000162642 rs2749527 0.906 MAM 1

RP11-488L18.10 ENSG00000259865 rs7146221 0.896 MAM 1

MAP6D1 ENSG00000180834 rs2005945 0.891 MAM 1

GRIPAP1 ENSG00000068400 rs2005945 0.891 MAM 1

PIPOX ENSG00000179761 rs2749527 0.878 MAM 1

CNOT3 ENSG00000088038 rs2749527 0.874 MAM 2

SIX4 ENSG00000100625 rs12892767 0.862 MAM 1

RP11-56B16.2 ENSG00000259556 rs7146221 0.844 MAM 1

KIF3B ENSG00000101350 rs2005945 0.843 MAM 1

TTL ENSG00000114999 rs2005945 0.841 MAM 1

LZIC ENSG00000162441 rs11629326 0.841 MAM 5

RP11-736K20.6 ENSG00000246523 rs7146221 0.835 MAM 1

RP11-323I15.5 ENSG00000259336 rs2005945 0.822 MAM 1

HNRNPCP6 ENSG00000213305 rs4283161 0.810 MAM 1

PI4KB ENSG00000143393 rs4283161 0.810 MAM 1

SLC37A2 ENSG00000134955 rs2281517 0.798 MAM 1

TRMU ENSG00000100416 rs11622665 0.779 MAM 1

RP11-5C23.2 ENSG00000273183 rs877081 0.767 MAM 1

IFI27L2 ENSG00000119632 rs2749539 0.752 MAM 1

NCKAP5L ENSG00000167566 rs7161521 0.736 MAM 9

ALG8 ENSG00000159063 rs2749530 0.999 SF 11

NPAS3 ENSG00000151322 rs8022616 0.966 SF 1

RNF13 ENSG00000082996 rs11622665 0.963 SF 1

OSMR ENSG00000145623 rs8022616 0.954 SF 1

ATP5J2 ENSG00000241468 rs2013150 0.950 SF 7

SIRT4 ENSG00000089163 rs7145181 0.948 SF 18

PPCDC ENSG00000138621 rs4900229 0.948 SF 18

ZBTB39 ENSG00000166860 rs2005945 0.873 SF 1

LMX1A ENSG00000162761 rs11629171 0.873 SF 3

VWA5A ENSG00000110002 rs11629171 0.873 SF 3

AUTS2 ENSG00000158321 rs8015996 0.873 SF 3

TTC9C ENSG00000162222 rs2013150 0.872 SF 5

DSG2 ENSG00000046604 rs3790035 0.871 SF 3

UNG ENSG00000076248 rs3748319 0.864 SF 7

RPL23A ENSG00000198242 rs4900229 0.859 SF 1

ATG13 ENSG00000175224 rs4990242 0.857 SF 2

PLD1 ENSG00000075651 rs4990242 0.857 SF 1

FGF7 ENSG00000140285 rs4990242 0.857 SF 1

RIMS3 ENSG00000117016 rs1243171 0.856 SF 1

ZC3H7B ENSG00000100403 rs941594 0.856 SF 3
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PBX2 ENSG00000204304 rs1243171 0.856 SF 3

PGM1 ENSG00000079739 rs1243171 0.856 SF 1

PKP2 ENSG00000057294 rs1243171 0.856 SF 1

STAT4 ENSG00000138378 rs941594 0.856 SF 2

EIF3M ENSG00000149100 rs941594 0.856 SF 4

MPDU1 ENSG00000129255 rs941594 0.852 SF 1

BRD2 ENSG00000204256 rs1243171 0.850 SF 2

AMPD3 ENSG00000133805 rs1950652 0.848 SF 15

USP11 ENSG00000102226 rs1950652 0.837 SF 6

PDZD8 ENSG00000165650 rs7146221 0.834 SF 1

KLHDC1 ENSG00000197776 rs17090691 0.829 SF 9

PDCD6 ENSG00000249915 rs7146221 0.827 SF 1

PHYH ENSG00000107537 rs8022616 0.822 SF 1

MAMDC2 ENSG00000165072 rs8022616 0.822 SF 1

IRF2 ENSG00000168310 rs8022616 0.822 SF 1

GOLGA7 ENSG00000147533 rs8022616 0.822 SF 1

TSPAN7 ENSG00000156298 rs1243171 0.821 SF 1

FOS ENSG00000170345 rs58622098 0.819 SF 10

LHFPL2 ENSG00000145685 rs2005945 0.814 SF 1

UBA1 ENSG00000130985 rs67994395 0.805 SF 1

APBB1 ENSG00000166313 rs67994395 0.805 SF 1

ME2 ENSG00000082212 rs8022616 0.785 SF 1

ZMAT2 ENSG00000146007 rs2749529 0.782 SF 5

HSPG2 ENSG00000142798 rs7146221 0.772 SF 1

MRFAP1 ENSG00000179010 rs2749527 0.772 SF 1

PDIA5 ENSG00000065485 rs1243171 0.769 SF 2

KDM1B ENSG00000165097 rs8022616 0.768 SF 1

XPNPEP1 ENSG00000108039 rs8022616 0.764 SF 1

ARHGAP10 ENSG00000071205 rs2005945 0.742 SF 1

ENSA ENSG00000143420 rs1243171 0.738 SF 2

SNRPB ENSG00000125835 rs67994395 0.736 SF 1

KHK ENSG00000138030 rs8022616 0.733 SF 1

SERHL2 ENSG00000183569 rs67994395 0.732 SF 1

FBXO32 ENSG00000156804 rs8015996 0.731 SF 3

ATHL1 ENSG00000142102 rs8022616 0.971 SKLM 1

ZNF566 ENSG00000186017 rs11629171 0.910 SKLM 3

ESRRG ENSG00000196482 rs7146221 0.908 SKLM 1

KLHDC3 ENSG00000124702 rs7146221 0.906 SKLM 1

PLEKHH2 ENSG00000152527 rs2749539 0.898 SKLM 1

PPP1R35 ENSG00000160813 rs2749539 0.894 SKLM 5

WDR55 ENSG00000120314 rs2749539 0.892 SKLM 1

PPP1R21 ENSG00000162869 rs11620777 0.891 SKLM 3

ZNF503 ENSG00000165655 rs4283161 0.884 SKLM 1

OGG1 ENSG00000114026 rs2749539 0.884 SKLM 1

PPP1R9B ENSG00000108819 rs2749539 0.882 SKLM 1

CCND3 ENSG00000112576 rs2749539 0.880 SKLM 1

SULT1A1 ENSG00000196502 rs2749539 0.879 SKLM 1

MTA2 ENSG00000149480 rs2749539 0.879 SKLM 1
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TMEM117 ENSG00000139173 rs2749539 0.879 SKLM 1

EFNB1 ENSG00000090776 rs2749539 0.879 SKLM 1

UTP14A ENSG00000156697 rs11622665 0.867 SKLM 1

RAPSN ENSG00000165917 rs12892767 0.858 SKLM 1

ALG1L ENSG00000189366 rs56045385 0.845 SKLM 2

ZNF35 ENSG00000169981 rs2749529 0.826 SKLM 2

ARHGEF28 ENSG00000214944 rs1956179 0.825 SKLM 1

NME7 ENSG00000143156 rs2736899 0.816 SKLM 1

CEP76 ENSG00000101624 rs877081 0.798 SKLM 1

MAPK12 ENSG00000188130 rs4283161 0.783 SKLM 1

KIAA0391 ENSG00000258790 rs2749539 0.765 SKLM 2

DNASE2 ENSG00000105612 rs877081 0.730 SKLM 1

SKA2 ENSG00000182628 rs2005945 0.992 VAF 10

FAM153C ENSG00000204677 rs2749539 0.989 VAF 2

RP11-844P9.1 ENSG00000251458 rs2749539 0.967 VAF 2

UBE2QL1 ENSG00000215218 rs8022616 0.959 VAF 1

DLG1 ENSG00000075711 rs2005945 0.956 VAF 1

REEP5 ENSG00000129625 rs2749539 0.946 VAF 1

C3orf80 ENSG00000180044 rs2005945 0.943 VAF 1

GNG2 ENSG00000186469 rs2736899 0.934 VAF 2

LUC7L3 ENSG00000108848 rs2005945 0.926 VAF 1

ARPC5 ENSG00000162704 rs2749539 0.903 VAF 2

SLC27A2 ENSG00000140284 rs35854995 0.895 VAF 1

TMED8 ENSG00000100580 rs35854995 0.888 VAF 1

L3MBTL4 ENSG00000154655 rs2749539 0.887 VAF 2

DENR ENSG00000139726 rs12590834 0.887 VAF 1

GSKIP ENSG00000100744 rs35854995 0.883 VAF 1

RP11-463J10.3 ENSG00000259007 rs2749539 0.868 VAF 1

UBE3A ENSG00000114062 rs35854995 0.864 VAF 1

OGT ENSG00000147162 rs35854995 0.864 VAF 2

PIGCP1 ENSG00000213713 rs35854995 0.864 VAF 2

ZNF358 ENSG00000198816 rs11620763 0.835 VAF 2

SGCB ENSG00000163069 rs113375097 0.828 VAF 1

NAE1 ENSG00000159593 rs4900229 0.823 VAF 2

C1orf43 ENSG00000143612 rs113375097 0.820 VAF 1

CXCL14 ENSG00000145824 rs1956179 0.820 VAF 1

BNC2 ENSG00000173068 rs113375097 0.819 VAF 1

LPCAT3 ENSG00000111684 rs1956179 0.802 VAF 1

PLCD1 ENSG00000187091 rs1956179 0.795 VAF 1

TACSTD2 ENSG00000184292 rs1956179 0.795 VAF 2

CHMP3 ENSG00000115561 rs1956179 0.795 VAF 1

ALS2 ENSG00000003393 rs1956179 0.795 VAF 1

ULK2 ENSG00000083290 rs1956179 0.793 VAF 1

THAP3 ENSG00000041988 rs1956179 0.792 VAF 1

MAP3K13 ENSG00000073803 rs2005945 0.788 VAF 1

BCL7B ENSG00000106635 rs2005945 0.788 VAF 1

LRP2 ENSG00000081479 rs2005945 0.788 VAF 1

ZSCAN5A ENSG00000131848 rs2005945 0.788 VAF 1
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NNT ENSG00000112992 rs2005945 0.788 VAF 1

LPIN1 ENSG00000134324 rs2005945 0.788 VAF 1

TP53 ENSG00000141510 rs2005945 0.788 VAF 1

ATL1 ENSG00000198513 rs2005945 0.788 VAF 1

CAV2 ENSG00000105971 rs2005945 0.788 VAF 1

UBE2J1 ENSG00000198833 rs2005945 0.788 VAF 1

TNPO2 ENSG00000105576 rs2005945 0.788 VAF 1

CD163 ENSG00000177575 rs2005945 0.788 VAF 1

L3MBTL3 ENSG00000198945 rs2005945 0.788 VAF 1

MTMR3 ENSG00000100330 rs2005945 0.788 VAF 1

TCEB3 ENSG00000011007 rs2005945 0.788 VAF 1

HLA-DPA1 ENSG00000231389 rs2005945 0.788 VAF 1

UBE4B ENSG00000130939 rs2005945 0.788 VAF 1

ANKFY1 ENSG00000185722 rs2005945 0.788 VAF 1

CPNE3 ENSG00000085719 rs2005945 0.788 VAF 1

DTNA ENSG00000134769 rs1956179 0.785 VAF 1

LRTOMT ENSG00000184154 rs1956179 0.784 VAF 1

GDPD3 ENSG00000102886 rs11620777 0.783 VAF 1

CSRNP3 ENSG00000178662 rs11620777 0.783 VAF 1

WAPAL ENSG00000062650 rs1956179 0.783 VAF 1

UAP1L1 ENSG00000197355 rs1956179 0.782 VAF 1

C1orf63 ENSG00000117616 rs1956179 0.781 VAF 2

ATP11A ENSG00000068650 rs1956179 0.781 VAF 1

Table 2.8: All genes associated with variation for plasma cortisol across all STARNET tissues (FDR =
15%). Only unique associations are included with the top SNP-gene pair. Number of associations
refers to the total number of cortisol associated SNPs associated with a given gene.
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Tissue Cluster enrichment score term

LIV

1.24

GO:0010646∼regulation of cell communication

GO:0023051∼regulation of signaling

GO:0009966∼regulation of signal transduction

1.19

GO:0030695∼GTPase regulator activity

GO:0060589∼nucleoside-triphosphatase regulator activity

GO:0043087∼regulation of GTPase activity

1

domain:RRM 2

omain:RRM 1

IPR000504:RNA recognition motif domain

IPR012677:Nucleotide-binding, alpha-beta plait

GO:0000166∼nucleotide binding

RNA-binding

SF

1.99

GO:0030057∼desmosome

GO:0030057∼desmosome

GO:0005911∼cell-cell junction

1.29

GO:0009117∼nucleotide metabolic process

GO:0006753∼nucleoside phosphate metabolic process

GO:0055086∼nucleobase-containing small molecule metabolic process

VAF

1.51

GO:0009898∼cytoplasmic side of plasma membrane

GO:0098562∼cytoplasmic side of membrane

GO:0031234∼extrinsic component of cytoplasmic side of plasma membrane

GO:0019898∼extrinsic component of membrane

GO:0019897∼extrinsic component of plasma membrane

GO:0098552∼side of membrane

1.34

Endoplasmic reticulum

GO:0005783∼endoplasmic reticulum

GO:0044432∼endoplasmic reticulum part

1.11

GO:0090174∼organelle membrane fusion

GO:0016050∼vesicle organization

GO:0044801∼single-organism membrane fusion

GO:0048284∼organelle fusion

GO:0061025∼membrane fusion

1.05

GO:0006644∼phospholipid metabolic process

GO:0008654∼phospholipid biosynthetic process

GO:0006650∼glycerophospholipid metabolic process

GO:0046486∼glycerolipid metabolic process

GO:0046474∼glycerophospholipid biosynthetic process

GO:0008610∼lipid biosynthetic process

GO:0045017∼glycerolipid biosynthetic process

GO:0090407∼organophosphate biosynthetic process

Table 2.9: Function enrichment of CORNET trans-genes using DAVID for top tissues.
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Tissue Cluster enrichment score Term

VAF (K=1)

1.89

GO:0000278∼mitotic cell cycle

GO:1903047∼mitotic cell cycle process

GO:0051726∼regulation of cell cycle

GO:0022402∼cell cycle process

GO:0007049∼cell cycle

1.66

GO:0033043∼regulation of organelle organization

GO:1902589∼single-organism organelle organization

GO:0051128∼regulation of cellular component organization

1.41

GO:0007093∼mitotic cell cycle checkpoint

GO:0045930∼negative regulation of mitotic cell cycle

GO:0000075∼cell cycle checkpoint

1.4

GO:0009898∼cytoplasmic side of plasma membrane

GO:0098562∼cytoplasmic side of membrane

GO:0098552∼side of membrane

1.37

Endoplasmic reticulum

GO:0005783∼endoplasmic reticulum

GO:0044432∼endoplasmic reticulum part

1.23

GO:0051726∼regulation of cell cycle

GO:0016032∼viral process

GO:0044764∼multi-organism cellular process

GO:0044403∼symbiosis, encompassing mutualism through parasitism

O:0044419∼interspecies interaction between organisms

GO:0044802∼single-organism membrane organization

1.16

GO:0031625∼ubiquitin protein ligase binding

GO:0044389∼ubiquitin-like protein ligase binding

GO:0031625∼ubiquitin protein ligase binding

1.15

GO:0065003∼macromolecular complex assembly

GO:0006461∼protein complex assembly

GO:0070271∼protein complex biogenesis

GO:0071822∼protein complex subunit organization

1.15

GO:0070062∼extracellular exosome

GO:1903561∼extracellular vesicle

GO:0043230∼extracellular organelle

GO:0031988∼membrane-bounded vesicle

GO:0070062∼extracellular exosome

GO:0044421∼extracellular region part

GO:0005576∼extracellular region

1.05

GO:0065003∼macromolecular complex assembly

GO:0022607∼cellular component assembly

GO:0044085∼cellular component biogenesis

Table 2.10: Function enrichment of CORNET trans-genes using DAVID visceral adipose following
K-means clustering.
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Chapter 3

Glucocorticoid regulated causal gene

networks

3.1 Introduction

3.1.1 Glucocorticoid regulated trans-genes

The previous chapter described the identification of genes trans-associated with ge-

netic variation for plasma cortisol at the SERPINA6/ SERPINA1 locus on chromo-

some 14 (Chapter 2.3.3). These trans-genes were primarily expressed in subcuta-

neous fat, visceral abdominal fat and liver, all tissues in which glucocorticoids play

an important role. Glucocorticoid signalling in liver regulates genes required for

metabolising lipids and glucose179. Glucocorticoids also play a crucial role in adi-

pogenesis and are involved in lipolysis during fasting, yielding glycerol which is re-

quired for gluconeogenesis in the liver180.

Glucocorticoids primarily influence gene expression through activation of GR.

As a dimer, GR is capable of activating transcription of target genes through the

binding of GREs125 (Chapter 1.6). This chapter investigates whether the influence of

genetic variation for plasma cortisol is mediated by trans-genes that are specifically
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regulated by GR. We identify a subset of cortisol associated trans-genes where there

is prior evidence of glucocorticoid regulation from the literature.

Chromatin Immunoprecipitation sequencing (ChIP-seq) has been established

as a tool for studying the role of protein-DNA interactions. This involves using a

cross linking agent, such as formaldehyde, to capture the protein-DNA interaction

within cells to preserve the chromatin conformation. Cells are then lysed, frag-

mented and the protein-DNA complexes are precipitated, usually through the use

of antibodies specific to the protein. When coupled with next generation DNA se-

quencing, it becomes possible to analyse millions of protein bound DNA fragments181.

ChIP-seq has been shown to be an important method for identifying transcrip-

tion factor binding sites, such as GREs. By using antibodies specific to the tran-

scription factor under investigation, it is possible to isolate and sequence the bound

DNA, which can then be mapped back to the target gene. Projects such as The

Encyclopedia of DNA Elements (ENCODE) have utilised ChIP-seq, in addition to

other techniques such as DNase footprinting, to identify transcription factor bind-

ing interactions across the genome182. Other projects such as ChEA have integrated

different ChIP experiments (ChIP-X) to produce databases of transcription factor

binding targets, including targets for NR3C1, the gene that encodes GR183.

In addition to global binding approaches for identifying transcription factor bind-

ing, perturbation based experiments can identify transcription factor targets un-

der prescribed biological conditions. As glucocorticoids have a highly specified re-

sponse, it is important to consider tissue context of transcription factor binding.

Dexamethasone is a synthetic GR agonist and is commonly used to activate GR in a

laboratory setting in place of endogenous glucocorticoids184. Experiments by Yu et

al185, have considered the role of GR binding using ChIP-seq to identify GR binding

sites in 3T3-L1 adipocytes treated with dexamethasone, identifying 274 glucocor-

ticoid responsive genes. Furthermore, adrenalectomised mice treated with the GR

agonist dexamethasone, have been used to identify GR responsive genes with RNA-

seq in subcutaneous adipose tissue (Morgan et al, Unpublished). It should however
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be noted that as dexamethasone is a far stronger GR agonist than endogenous cor-

tisol186, activation of GR by dexamethasone may not be as clinically comparable to

cortisol activated genes.

The aforementioned datasets from both large scale, transcription factor bind-

ing experiments and tissue specific perturbation experiments were used to identify

a subset cortisol associated trans-genes with evidence of regulation by glucocorti-

coids. Assigning targets to transcription factors is a non-trivial problem, as there

is limited overlap between different methods, as many transcription factor interac-

tions with chromatin do not result in changes in gene expression187. Therefore it

is important to consider the global impact of transcription factor binding in addi-

tion to experiments targeting activation of specific transcription factors within the

biological context e.g. GR activation in response to dexamethasone treatment. This

approach aims to address the hypothesis that genetic variation for plasma cortisol

impacts phenotypic variation through modulation of GR action.

3.1.2 Glucocorticoid regulated gene networks

To examine the transcriptional impact of genetic variation for cortisol, as mediated

by glucocorticoid regulated trans-genes, causal inference approaches were utilised

to develop causal gene networks. Not all trans-genes will directly impact phenotypic

change, but causal networks have the capability to identify cortisol associated genes

that are key regulators of networks of genes that may impact phenotypic variation.

Here we use eQTLs to establish causal relationships between pairs of genes, from

which networks of causal gene-gene relationships can be reconstructed.

In this chapter we used causal inference to identify pairwise causal relation-

ships between genes, using transcriptomic and genomic data from STARNET. This

involved the use of the software package Findr92, which implements a series of sta-

tistical tests to infer causality between a pair of genes using eQTLs as genetic instru-

ments (Chapter 1.4). Findr introduces six likelihood ratio tests (Figure 3.1A) relating

to a given gene pair (genes A and B) and an eQTL of gene A (E). For each test, Findr
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calculates the Bayesian posterior probability for the selected hypothesis being true,

allowing for the development of composite tests to infer the probability of an A →B

relationship while using E as an instrumental variable (Figure 3.1B).

Figure 3.1: (A) Likelihood ratio tests from Findr package used to test for a causal relationship
between genes A and B using eQTL E. (B) Test combination in Findr. Composite tests can be
constructed from the base Findr tests to infer an A →B relationship. Row 1 shows mediation
analysis as inferred by P2*P3. A false negative (missing interaction) is returned in instances where a
true interaction is subject to unobserved or unknown confounding (H). Row 2 shows the secondary
linkage test (P2) which is capable of resolving causal models with unobserved confounding,
although it is unable to distinguish causal models from models where E is a common cause of A and
B independently, which raises a false positive (wrong prediction). Row 3 shows instrumental
variable analysis where P2*P5 is capable of resolving causal models with unobserved confounding,
as well as models where A and B are associated independently with E without unobserved
confounding (i.e. E explains all the correlation between A and B), and will only return a false
positive if E affects A and B independently but does not explain all of the correlation between A and
B due to unobserved confounding. Figure adapted from Ludl and Michoel, 2021188.

eQTLs have been used in mediation analysis to distinguish between different

causal models and to separate traits that are causal for complex traits from those

which are reactive. In mediation analysis, causality is established between two traits

(A and B) by testing if the association between the eQTL and one of the traits is me-

diated by the other trait and exhibits conditional independence with the eQTL30. An

A →B relationship is inferred if, an E →B relationship can be established which is

dependent on A i.e. the relationship collapses following the blocking of (condition-

ing on) A. If this is the case, a causal A →B relationship can be established as the
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flow of information will travel from the mediating trait to the other.

Examples of mediation analysis with QTLs include likelihood-based causality

model selection (LCMS)189, which selects the best fitting causal model using con-

ditional correlations between QTLs and two traits. This approach has also been

applied specifically to examine relationships between genes with methods such as

Trigger, using the same concept of combining posterior probabilities as calculated

in Findr to test for mediated associations between eQTLs and RNA-expression lev-

els167. Millstein and colleagues used mediation analysis to develop the Causal Infer-

ence Test (CIT) which is a method similar to LCMS that uses conditional indepen-

dence to determine if the mediator is causal for the trait90.

The mediation method can be used in Findr as a composite of the secondary

linkage and conditional independence tests (P2*P3). However, a significant draw-

back of mediation analysis is that it preforms poorly in instances where common

regulators of A and B act as a confounder, where it will reject the hypothesis of a

causal interaction, leading to a false negative prediction. The original Findr manuscript

demonstrated that P2*P3 fails in the presence of hidden confounders and is unable

to detect weak causal interactions92. When using large datasets such as STARNET,

increased power obtained from large sample sizes increases the probability of de-

tecting weak correlations due to unknown confounders (common upstream regu-

lators), adding to the false negative rate. Thus, paradoxically, the performance of

mediation was shown to decrease with increasing sample size92.

The controlled test (P5) is a causal inference test, which can be used as a com-

posite test with secondary linkage (P2*P5) to infer a causal A →B relationship while

using a cis-eQTL, E, as an instrumental variable. P5 examines whether A and B are

associated independently with E, while P2 tests for a direct association between E

→B. Previous work has demonstrated that most cis-eQTLs are only associated with

a single gene190, therefore selecting cis-eQTLs specifically as an instrument, allows

E →B to be used as a proxy for estimating causal effects between A →B. When com-

bined with P2, P5 can then be used to account for the comparatively few instances
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where E is a cis-eQTL for more than one gene, although in such cases a false positive

may still occur when A and B are confounded by a common regulator. Therefore it is

important when using P2*P5 to examine manually all cis-associations for selected

E of interest, to account for any sources of pleiotropy that may have been missed by

P5.

Systematic analysis by the Findr authors demonstrates that the increased false

positive rate of P2*P5 when compared to P2*P3 is outweighed by the benefit of a

greatly decreased false negative rate, and P2*P5 performs significantly better in both

synthetic and real world data92. Based on this evidence, P2*P5 was taken forward

as the primary approach for estimating causal effects between glucocorticoid reg-

ulated trans-genes and other genes in STARNET. This required cis-eQTL discovery

to be undertaken for all GR-regulated trans-genes, where only genes with a valid

cis-eQTL could be included in the analysis.

3.1.3 Chapter objectives

1. To identify cortisol linked trans-genes that have evidence of regulation by glu-

cocorticoids.

2. To estimate causal effects between glucocorticoid regulated trans-genes and

other genes in respective tissue.

3. To reconstruct glucocorticoid responsive gene networks.
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3.2 Materials and methods

3.2.1 Identification of glucocorticoid regulated trans-genes

GR target datasets

Multiple datasets were used to identify genes that had prior evidence of regulation

by GR (Table 3.1). These datasets have been filtered to include targets for NR3C1.

Dataset Study type Target definition

Yu et al, 2010185 ChiP-seq and microar-
ray analysis in adipocyte
specific (3TS-L1).

Use of PinkThing to identify
gene closest to peak.

Morgan, unpublished* RNA-seq for subcutaneous
and epididymal adipose
from dex treated mice.

Differential expression
based on fold change.

ENCODE182 Large scale high throughput
ChiP-seq.

Map ChIP-seq peak to clos-
est gene. If multiple peaks
are identified then it is clos-
est to the gene.

TRANSFAC191 Curated Transcription Fac-
tor Targets dataset based on
Positional Weight Matrices
(PWMs).

PWMs are used to uncharac-
terised bindings sequences
to closet gene using MATCH.

CHEA183 ChIP-X Enrichment Analysis
from published ChIP-X ex-
periments.

Target calling based on 400
bp sliding window to detect
overlap between peak and
closest gene.

Table 3.1: Datasets for identifying genes regulated by glucocorticoids. *Murine RNA-seq data is
currently unpublished and was kindly provided by Dr Ruth Morgan from The University of
Edinburgh Centre for Cardiovascular Science.

Prioritisation of GR regulated trans-genes

Genes were labelled according to evidence of GR regulation from datasets shown

in Table 3.1. This approach was taken for trans-genes from STARNET liver, sub-

cutaneous fat and visceral abdominal fat. The critera included: 1) appearing in a

transcription factor database (ENCODE, TRANSFAC, CHEA). 2) Identified as GR tar-

get from ChIP-seq experiment in adipocytes from Yu et al185 as according to authors
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criteria for calling GR targets. 3) Gene is differentially expressed in response to dex

treatment in adipocytes from Yu et al185 as according to authors criteria for calling

GR targets. 4) Murine homolog of human gene is differentially expressed in murine

RNA-seq experiments (FC > 1; p-value < 0.05). Genes were then given a score and

ranked according how well they met the criteria for GR regulation (+1 for each item

matched from criteria 1-4).

For each GR trans-gene, the direction of the cortisol associated effect was esti-

mated from the Pearson correlation coefficient of the gene expression level within

the associated tissue and the associated cortisol SNP genotype (-012 format). A pos-

itive correlation was reported as a gene up-regulated in response to the effect of the

alternate allele, and a negative correlation was reported as down-regulation.

Transcription factor target enrichment

Enrichment of transcription factors targets within gene sets was performed using

Fisher’s exact test using the Python module Scipy Stats. This involved the creation

of a 2x2 contingency table based on a tissue specific background consisting of all

genes tested in the trans-gene analysis (Table S3.11).

3.2.2 Gene network reconstruction

cis-eQTL discovery for instrument selection

Cis-eQTL discovery was carried out to identify genetic instruments to be used for

causal inference analysis with Findr (Figure 3.2). An automated pipeline was es-

tablished to use the secondary linkage test (P2) to calculate SNP-gene associations

when supplied with a list of genes. This was completed using the same process

as described in methods section 2.2.3 where SNP-gene associations were obtained

between all SNPs within 1 Mb of the trans-gene and all other genes for the tissue

specific to the trans-gene.
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Figure 3.2: Instrument selection for causal analysis with Findr. Flowchart depicts identification of
cis-eQTLs for use as genetic instruments for causal analysis with Findr.

Associations between all SNPs and the trans-gene were extracted from the out-

put. and a primary cis-eQTL was selected for each gene, defined as the SNP-gene

association with the highest Findr P2 score for the trans-gene. An alternate, inde-

pendent, cis-eQTL was selected as the second strongest cis-association, not in LD

with the primary cis-eQTL. LD between SNPs was calculated as the Pearson corre-
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lation coefficient between the primary cis-eQTL genotype with all other SNP geno-

types. The alternate cis-eQTL was defined as the top cis-association, which was not

in LD with the primary cis-eQTL (R2 < 0.5).

To test for pleiotropy between the selected instrument and other cis-genes, cis

associations between all cis genes (± 1 Mb of the trans-gene) and the primary in-

strument were obtained. These associations were then extracted and compared to

the cis-association between the instrument and trans-gene in question.

Pairwise causal inference with Findr

All genes with a valid cis-eQTL (P2 ≥ 0.75) were taken forward for causal analysis

with Findr92 (version 1.0.8). Causal relationships were inferred between these cis-

eQTL genes (A-genes) and all other genes in the same tissue (B-genes). The input

was as follows: (dg) array of eQTL genotypes A-gene in 012 format, (d) array of nor-

malised A-gene expression levels, (dt) array of expression levels for all B-genes in

the relevant tissue sorted with d appearing on top.

The output of all tests in Findr was calculated using the pijs_gassist function

from the Findr Python package. The posterior probability of a causal interaction

(P(A →B)) was calculated from the product of the alternative hypotheses from the

secondary linkage test (P2) and the controlled test (P5) (Figure 3.1). This approach

was undertaken for each A-gene in a given tissue in a iterative fashion. Following

completion of all A-genes in a tissue, the output was converted from the default

matrix format to a Pandas DataFrame.

Implementation of global FDR threshold

Each tissue specific gene set of A →B pairwise interactions was filtered according to

a local precision FDR threshold (Findr score) for each interaction, to correspond to

a global FDR for all interactions in the tissue set. The Findr score for a given A →B

pairwise interaction, is calculated as 1 - the probability of that interaction being a
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false positive.

To obtain the probability of a false positive across all interactions in a gene set,

this was calculated as 1 minus the mean of all local precision FDR scores for a given

tissue. A Findr score cut off was set to reflect the desired global FDR167.

Network visualisation using Cytoscape

Networks were assembled using the network visualisation tool, Cytoscape (version

3.8.0). Networks were assembled from FDR thresholded pairwise gene interactions

previously described. These were assembled as directed networks where the A-gene

acts as the parent node and the B-gene as the child node, with the posterior proba-

bility of an A →B interaction forming the network edge.
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3.3 Results

3.3.1 Identification of glucocorticoid responsive trans-genes in liver

and adipose tissue

GR regulated trans-genes identified from transcription factor datasets and exper-

imental data

Having previously identified genes trans-associated with genetic variation for plasma

cortisol (Chapter 2.3.3), we next aimed to define a subset of these genes that were

regulated by GR. These genes were cross-referenced with GR targets identified from

a variety of different sources as described in Table 3.1. This included large projects

such as ENCODE, TRANSFAC and CHEA which predict transcription factor bind-

ing targets from high throughput transcription factor binding assays. We also in-

cluded predicted GR targets from perturbation based experiments, in specific tis-

sues. ChIP-seq and microarray analysis has been used to identify 274 glucocorti-

coid regulated genes in 3TS-L1 adipocytes, a murine derived cell line. In addition

RNA-seq data in subcutaneous fat from adrenalectomised mice treated with dex-

amethasone, a GR agonist, has been used to identify genes that are differentially

expressed in response to dex treatment.

The greatest number of unique cortisol associated trans-genes were identified

in liver (n=43), subcutaneous fat (n=54) and visceral abdominal fat (n=59) at a 15%

FDR threshold. The involvement of these tissues in glucocorticoid signalling has

been well documented in the literature and as a result the identification of GR regu-

lated trans-genes was restricted to these tissues. As the 3TS-L1 adipocyte study was

carried out in adipose specifically, comparisons of these genes were only made with

subcutaneous and visceral adipose trans-genes. Likewise, as the murine RNA-seq

experiments were restricted to subcutaneous adipose, only subcutaneous adipose

trans-genes were compared to these differentially expressed genes.
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Liver

In the liver trans-gene set, 19/43 genes were identified that were present in either

the ENCODE, TRANSFAC or CHEA datasets (FDR = 15%). This includes SERPINA6

which is cis-associated with the genetic variation for plasma cortisol, as described

previously (Chapter 2.3.1). One gene, CPEB2, was identified in more than one dataset

and was present in both ENCODE and CHEA. CPEB2 (P2 score = 0.89) is a regulator

of translation, splice variants of which have been linked to cancer metastasis192.

Gene name Transcription factor db GR count Pearson R2 Direction

CPEB2 CHEA, ENCODE 2 0.173 +

SERPINA6 ENCODE 1 0.260 +

RDX ENCODE 1 -0.130 -

YBX3 ENCODE 1 -0.178 -

TOR4A ENCODE 1 0.065 +

OGT ENCODE 1 -0.167 -

ALG5 ENCODE 1 0.169 +

EIF3H CHEA 1 -0.194 -

CNKSR2 CHEA 1 -0.111 -

PCSK5 ENCODE 1 -0.100 -

FOXN2 ENCODE 1 -0.088 -

NAB2 ENCODE 1 0.153 +

DNM1L ENCODE 1 -0.029 -

NUCB2 CHEA 1 -0.036 -

PTPN12 ENCODE 1 -0.120 -

SLC26A1 ENCODE 1 -0.145 -

MAPK11 ENCODE 1 -0.177 -

ZNF649 ENCODE 1 0.073 +

RABEP1 ENCODE 1 0.089 +

Table 3.2: Cortisol associated trans-genes from STARNET-liver (FDR = 15%) with evidence of GR
regulation. Transcription factor db includes ENCODE, TRANSFAC and CHEA transcription factor
datasets. Direction of effect is estimated from the Pearson correlation coefficient of the gene
expression level and cortisol associated genotype.

Subcutaneous fat

Out of the cortisol associated trans-genes identified in subcutaneous adipose (FDR

= 15%), 28/54 genes were present in either a transcription factor dataset or identified
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from the adipose specific perturbation datasets. There were 13 genes that had been

identified as GR targets from both high throughput transcription factor binding as-

says and adipose specific experiments. Evidence from both types of assay indicates

that these are the strongest candidates for GR regulation.

The subcutaneous fat trans-gene with the strongest evidence of GR regulation is

PKP2 (P2 score = 0.86) which was identified as a GR target in both CHEA and EN-

CODE as well as being differentially expressed in dex treated mice and identified

as a GR target in adipocytes185. PKP2 is a poorly characterised gene that encodes

desmosomal protein plakophilin-2. Deletions in this gene have however been asso-

ciated with arrhythmogenic right ventricular cardiomyopathy. Interestingly, PKP2

has also been shown to respond to dex treatment in a reporter system, however the

authors were unable to detect a traditional GRE consensus sequence for PKP2193.

Visceral adipose fat

Visceral adipose tissue had the largest number of cortisol associated trans-genes.

21/59 of these genes had some evidence of being targets of GR, which is less than

for subcutaneous adipose. There were 5 genes that had been identified as GR targets

from both high throughput transcription factor binding assays and adipose specific

experiments. The top gene in this case was BNC2 which was identified as a GR target

in CHEA, TRANSFAC and ENCODE as well as appearing as a target from ChIP-seq

in adipocytes. BNC2 encodes Basonuclin 2 which is a zinc finger protein. Mutations

in this gene have been linked to congenital lower urinary-tract obstruction194.

No enrichment of GR regulated trans-genes with Fisher’s exact test

Fisher’s exact test was used to identify if there are more GR genes in the cortisol asso-

ciated trans-gene sets than what would be expected by chance. Enrichment analysis

was carried out for each tissue set of trans-genes at a 15% FDR threshold across the

different GR datasets presented in the previous section. This was performed using
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Gene name ChIP-seq Microarray Murine Dex 5% FDR Transcription factor db GR count Pearson R2 Direction

PKP2* True False True CHEA, ENCODE 4 0.088 +

RNF13* True False False TRANSFAC, ENCODE 3 -0.171 -

OSMR* True False True ENCODE 3 -0.106 -

PHYH* True False True CHEA 3 0.076 +

ZC3H7B* True False True CHEA 3 -0.052 -

AMPD3* True False False CHEA 2 -0.165 -

PLD1* True False False ENCODE 2 0.078 +

IRF2* True False False ENCODE 2 0.187 +

LHFPL2* False True False ENCODE 2 0.048 +

ME2* False False True ENCODE 2 0.174 +

FOS* True False False ENCODE 2 -0.081 -

PPCDC* True False False ENCODE 2 -0.002 -

AUTS2* True False False TRANSFAC 2 -0.129 -

STAT4 False False True False 1 0.066 +

XPNPEP1 True False False False 1 -0.161 -

ATP5J2 False False False ENCODE 1 0.051 +

MAMDC2 False False True False 1 0.056 +

KLHDC1 True False False False 1 -0.144 -

PDZD8 False False False ENCODE 1 -0.115 -

USP11 False False False ENCODE 1 -0.086 -

KHK False False False ENCODE 1 0.172 +

HSPG2 False False False ENCODE 1 0.097 +

PGM1 False False True False 1 0.043 +

PBX2 False False True False 1 -0.046 -

ENSA False False True False 1 -0.108 -

TSPAN7 True False False False 1 -0.067 -

ATG13 False False False ENCODE 1 0.013 +

PDIA5 False False False ENCODE 1 -0.058 -

Table 3.3: Cortisol associated trans-genes from STARNET-subcutaneous fat (FDR = 15%) with
evidence of GR regulation. Transcription factor db includes ENCODE, TRANSFAC and CHEA
transcription factor datasets. ChIP-seq and Microarray fields are from Yu et al experiments in
adipocytes185. Murine dex is from unpublished dexamethasone treated adrenalectomised mice. *
Indicates genes that have been identified as GR targets from both global TF binding and
perturbation experiments. Direction of effect is estimated from the Pearson correlation coefficient
of the gene expression level and cortisol associated genotype.

all expressed genes in the corresponding tissue as a background.

Following analysis across different data sources of GR regulation, there is no in-

dication that there is an enrichment of GR-regulated genes in any of the trans-gene

sets examined (Table 3.5)
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Gene name ChIP-seq Microarray Transcription factor db GR count Pearson R2 Direction

BNC2* True False CHEA, TRANSFAC, ENCODE 4 -0.157 -

DTNA* True False CHEA, TRANSFAC 3 -0.158 -

LPIN1* True False ENCODE 2 0.125 +

ULK2* True False ENCODE 2 -0.104 -

CAV2* True False ENCODE 2 -0.048 -

LUC7L3 False False TRANSFAC, ENCODE 2 0.147 +

BCL7B False False ENCODE 1 0.027 +

ATL1 False False ENCODE 1 -0.173 -

CD163 False False CHEA 1 0.153 +

CXCL14 False False TRANSFAC 1 0.205 +

ANKFY1 False False ENCODE 1 0.083 +

NNT True False False 1 0.121 +

UBE3A False False TRANSFAC, 1 -0.169 -

OGT False False ENCODE 1 -0.100 -

DENR False False ENCODE 1 0.071 +

CSRNP3 False False CHEA 1 -0.168 -

DLG1 True False False 1 -0.093 -

REEP5 False False ENCODE 1 -0.022 -

WAPAL True False False 1 0.146 +

GNG2 True False False 1 -0.098 -

SLC27A2 True False False 1 -0.180 -

Table 3.4: Cortisol associated trans-genes from STARNET-visceral adipose fat (FDR = 15%) with
evidence of GR regulation. Transcription factor db includes ENCODE, TRANSFAC and CHEA
transcription factor datasets. ChIP-seq and Microarray fields are from Yu et al experiments in
adipocytes185. * Indicates genes that have been identified as GR targets from both global TF binding
and perturbation experiments. Direction of effect is estimated from the Pearson correlation
coefficient of the gene expression level and cortisol associated genotype.

3.3.2 Identification of cortisol responsive gene networks in hep-

atic and adipose tissues

Cis-eQTL discovery for prioritised trans-genes

Having identified cortisol associated trans-genes that are regulated by GR, causal

analysis was used to identify genes that may regulate transcriptional networks. eQTLs

were used as genetic instruments to infer causality between GR trans-genes and

other genes in STARNET using the instrumental variable composite test from Findr

(P2*P5). This test requires cis-eQTLs as instruments specifically, therefore cis-eQTL

mapping was undertaken for all GR regulated trans-genes.

As in Chapter 2.3.1, the linkage test (Findr P2) was used to identify cis-eQTLs for
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GR dataset Tissue Odds ratio p-value

TF databse

liver 1.71 0.10

subcutaneous fat 1.35 0.30

visceral abdominal fat 0.87 0.67

GR ChiP-seq
subcutaneous fat 1.54 0.16

visceral abdominal fat 0.93 1.00

GR Microarray
subcutaneous fat 1.73 0.45

visceral abdominal fat 0.00 1.00

Table 3.5: Enrichment of GR regulated genes within cortisol associated trans-genes sets. Odds ratio
and p-value obtained from Fisher’s exact test with tissue specific background.

each GR target gene in turn, within the tissue where it is associated with cortisol.

For each gene, all SNPs within a 1 Mb window of the target gene were tested against

all genes from the relevant tissue, to obtain the null distributions required for Findr

P2. The top SNP associations with the cis gene was then extracted. Only genes with

a validated cis-eQTL (Findr P2 ≥ 0.75) were taken forward for causal analysis using

the eQTL instruments as a genetic instrument in Findr (Table 3.6). Out of a total of

68 trans-genes with evidence of GR regulation 38 had a cis-eQTL that could be taken

forward for causal analysis, broken down as 12 from liver, 19 from subcutaneous fat

and 7 from visceral abdominal fat (Findr P2 ≥ 0.75).

Reconstruction of gene networks in liver, subcutaneous fat and visceral abdomi-

nal fat

Using the alternative test combination in Findr (P2*P5), causal estimates were ob-

tained for pairwise relationships between GR regulated trans-genes and all other

genes within the given tissue. This was carried out for all GR regulated trans-genes

in liver, subcutaneous fat and visceral abdominal fat with a valid cis-eQTL instru-

ment (Findr P2 ≥ 0.75). Both 10% and 15% global FDR thresholds were then im-

posed from the mean of the local precision FDR (Findr score) of each gene-gene

interaction (Table 3.7). Primary networks were obtained by filtering to include only

GR trans-genes with a minimum of 4 targets genes at the global FDR threshold.
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Tissue Gene name Ensembl gene ID SNP P2 Findr score

liver ALG5 ENSG00000120697 rs9576151 1.00

liver NUCB2 ENSG00000070081 rs214080 1.00

liver FOXN2 ENSG00000170802 rs79073127 1.00

liver YBX3 ENSG00000060138 rs11053915 1.00

liver PTPN12 ENSG00000127947 rs7783866 1.00

liver SERPINA6 ENSG00000170099 rs2736898 1.00

liver TOR4A ENSG00000198113 rs28567631 1.00

liver RABEP1 ENSG00000029725 rs56176579 0.99

liver RDX ENSG00000137710 rs7107823 0.97

liver MAPK11 ENSG00000185386 rs742186 0.96

liver CPEB2 ENSG00000137449 rs62410848 0.90

liver DNM1L ENSG00000087470 rs11052028 0.86

liver SLC26A1 ENSG00000145217 rs3733346 0.84

liver PCSK5 ENSG00000099139 rs11145221 0.74

subcutaneous fat OSMR ENSG00000145623 rs13165709 1.00

subcutaneous fat AUTS2 ENSG00000158321 rs2141205 1.00

subcutaneous fat PDZD8 ENSG00000165650 rs149832558 1.00

subcutaneous fat KHK ENSG00000138030 rs7560144 1.00

subcutaneous fat ATP5J2 ENSG00000241468 rs138229375 1.00

subcutaneous fat PPCDC ENSG00000138621 rs3812943 1.00

subcutaneous fat PGM1 ENSG00000079739 rs139945547 1.00

subcutaneous fat PHYH ENSG00000107537 rs6602646 1.00

subcutaneous fat AMPD3 ENSG00000133805 rs11042759 1.00

subcutaneous fat PKP2 ENSG00000057294 rs12825217 1.00

subcutaneous fat STAT4 ENSG00000138378 rs4341966 1.00

subcutaneous fat ATG13 ENSG00000175224 rs61882678 0.99

subcutaneous fat PLD1 ENSG00000075651 rs10936700 0.97

subcutaneous fat IRF2 ENSG00000168310 rs34985265 0.94

subcutaneous fat PBX2 ENSG00000204304 6:32853219 0.93

subcutaneous fat XPNPEP1 ENSG00000108039 rs3780953 0.90

subcutaneous fat RNF13 ENSG00000082996 rs9853321 0.81

subcutaneous fat ZC3H7B ENSG00000100403 rs9611739 0.77

visceral abdominal fat NNT ENSG00000112992 rs6451720 1.00

visceral abdominal fat DTNA ENSG00000134769 rs71363449 1.00

visceral abdominal fat ULK2 ENSG00000083290 rs79506397 0.88

visceral abdominal fat CD163 ENSG00000177575 rs73059776 0.86

visceral abdominal fat LUC7L3 ENSG00000108848 rs6504682 0.80

visceral abdominal fat DENR ENSG00000139726 rs73230017 0.76

visceral abdominal fat ATL1 ENSG00000198513 rs61543335 0.76

visceral abdominal fat BNC2 ENSG00000173068 rs10810646 0.75

Table 3.6: GR regulated cortisol linked trans-genes (FDR = 15%) with a valid cis-eQTL for causal
analysis (Findr P2 ≥ 0.75).

Liver

In STARNET-liver 48 causal interactions were obtained at a global 10% FDR thresh-

old (Findr score ≥ 0.855) (Table S3.12). When filtering to a minimum of 4 targets, the
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Tissue FDR threshold Total targets Network regulator Regulator targets

liver
15% 197 CPEB2 190

10% 48 CPEB2 44

subcutaneous fat

15% 1701

RNF13 416

IRF2 247

PBX2 883

10% 486

RNF13 215

IRF2 128

PBX2 138

visceral abdominal fat

15% 396
CD163 378

LUC7L3 15

10% 17
CD163 4

LUC7L3 11

Table 3.7: Network targets following FDR filtering. Total targets includes all pairwise interactions at
given threshold and network regulators correspond to trans-genes with at least 4 network targets at
the given FDR threshold. Inclusive of network regulators present at both 10% and 15% thresholds.

only GR regulated trans-gene that remained was CPEB2 (Figure 3.3). Notably, this

was also the trans-gene that appeared in the most GR target datasets forming a net-

work with 44 target genes. Functional enrichment was performed using DAVID for

all CPEB2 target genes (Table 3.8). The strongest cluster was related to fatty acid beta

oxidation and lipid metabolism, including 5 genes related to GO:0006635 - fatty acid

beta-oxidation (adj p-value = 0.002). Other enrichments stem from 8 genes related

to acquired immunodeficiency syndrome and disease progression (adj p-value =

0.003).

The strongest causal relationship within this network was between CPEB2 and

the gene HADHA. (Findr score = 0.99), responsible for encoding the alpha subunit

of the mitochondrial trifunctional protein195. Mutations affecting this protein have

been linked to long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency,

which affects the ability to metabolise fatty acids in the liver196. These mutations

have also been linked to maternal acute fatty liver during pregnancy197.
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Figure 3.3: 10% FDR gene network for STRANET-liver. Reconstructed from pairwise interactions (A
→B) from GR regulated trans-genes (A) with a valid cis-eQTL (Findr P2 ≥ 0.75) against all other
STARNET-liver genes. Edges represent Bayesian posterior probabilities of pairwise interaction
between genes (nodes). Arrow indicates direction of regulation and interactions were only retained
where parent node (A gene) had at least 4 targets.

Subcutaneous fat

In STARNET-subcutaneous fat, 486 causal relationships were detected at a 10% FDR

threshold (Findr score = 0.87), which is the most out of all tissues examined (Table

S3.13). When filtering to exclude trans-genes with less than 4 targets at this thresh-

old, three major sub-networks are represented under the regulation of the genes

RNF13, PBX2 and IRF2 (Figure 3.4). This includes a total of 481 causal relationships

across all three sub-networks, including 8 genes that are co-regulated by at least two

sub-networks.

RNF13 is the largest subcutaneous fat sub-network with 215 gene targets at a

10% FDR threshold. RNF13 encodes IRE1α-interacting protein which plays an im-

portant role in the endoplasmic reticulum (ER) stress response, through regulation

of IRE1α which is a critical sensor of unfolded proteins198. ERN1, the gene that en-

codes IRE1α does not appear as a target of RNF13 in this sub-network. A detailed
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Tissue Network regulator Cluster enrichment score Cluster

Liver CPEB2

3.54 Fatty acid beta oxidation and lipid
metabolism

3.07 Mitochondria and acquired immunodefi-
ciency syndrome

2.45 3-hydroxyacyl-CoA dehydrogenase activity

2.1 Mitochondrial inner membrane

1.58 Fatty acid metabolism

1.31 Focal adhesion

Subcutaneous fat

IRF2

1.94 Poly(A) RNA binding

1.85 Ubiquitin-associated/translation elongation
factor EF1B, N-terminal, eukaryote

1.76 Viral translational termination-reinitiation

1.74 Transcription factor activity/ binding

1.74 Cellular protein catabolic process

PBX2

2.12 Endoplasmic reticulum unfolded protein re-
sponse

1.95 Poly(A) RNA binding

1.85 Nucleotide-binding, alpha-beta plait

1.84 transcription factor activity/ binding

1.63 mRNA splicing, via spliceosome

RNF13

3.6 Poly(A) RNA binding

3.18 Centriole

2.92 Zinc finger, C2H2

2.92 Transcription regulation

2.3 Mitotic cell cycle process

Table 3.8: Functional enrichment of causal network targets using DAVID. Filtered to enrichment
score > 1

view of the RNF13 sub-network can be seen in Figure S3.7.

The strongest functional enrichment term for RNF13 targets is related to Poly(A)

RNA binding, where 33 targets are included for this term, GO:0044822 poly(A) RNA

binding (adj p-value = 0.01), and 39 targets are included for RNA binding, GO:0003723

RNA binding (adj p-value = 0.04). Other notable terms include 44 genes related to

transcriptional regulation (adj p-value) and 23 genes related to Zinc finger motifs

(adj p-value = 0.05).

The IRF2 sub-network contains 128 targets at a 10% FDR threshold. IRF2 is a

member of the Interferon Regulatory Factor (IRF) family and encodes the transcrip-

tion factor Interferon Regulatory Factor 2. IRF2 has been shown to play an impor-

tant role as a repressor of the transcription factor from the same family, IRF1 which
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Figure 3.4: 10% FDR networks for STARNET-subcutaneous fat. Reconstructed from pairwise
interactions (A →B) from GR regulated trans-genes (A) with a valid cis-eQTL (Findr P2 ≥ 0.75)
against all other STARNET-subcutaneous fat genes. Edges represent Bayesian posterior
probabilities of pairwise interaction between genes (nodes). Arrow indicates direction of regulation
and interactions were only retained where parent node (A gene) had at least 4 targets.

responds to interferons and plays an important role in immune response199. Fur-

thermore, IRF1 has previously been identified as a marker for glucocorticoid sensi-

tivity in peripheral blood200, although it does not appear as a target of IRF2 in this

network (Findr score = 0.13). A detailed view of the IRF2 sub-network can be seen

in Figure S3.8.

Following functional enrichment of IRF2 targets, the strongest enrichment term

includes 19 genes related to Poly(A) RNA binding (p-value = 0.009), however this

association is no longer retained following multiple testing correction. Some no-

table targets of IRF2 include LDB2 (Findr score = 0.94) and LIPA (Findr score = 0.91).

GWAS suggests functions for LIPA related to CAD and ischaemic cardiomyopathy

and LDB2 has been demonstrated to be involved in the development of atheroscle-

rosis201. Additionally, cortisol has been shown to induce a 5 fold reduction in LDB2

expression in adipocytes202.

The PBX2 sub-network contains 138 targets at a 10% FDR threshold. The strongest
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enrichment in this region includes 6 target genes for endoplasmic reticulum un-

folded protein response (p-value = 0.004), however this association is not retained

following multiple testing. PBX2 is another transcription factor and a member of the

TALE/PBX homeobox family. It activates transcription through binding to the TLX1

promoter. In this network, it shares five targets with IRF2 and one with RNF13. A

detailed view of the PBX2 sub-network can be seen in Figure S3.9.

Visceral adipose fat

Although STARNET-visceral abdominal fat contained the largest number of trans-

associations with cortisol SNPs, the fewest causal relationships were detected in this

tissue at 10% FDR (Table 3.14). Two small sub-networks were detected, regulated

by the genes LUC7L3 and CD163 composed of eleven and four targets specifically.

No functional enrichment was observed for any of the targets of CD163 or LUC7L3.

Interestingly, when the FDR threshold is reduced to 15% the sub-network for CD163

is expanded to include 378 targets, a much more dramatic expansion compared to

reducing the threshold to 15% FDR with other regulators.

Figure 3.5: 10% FDR networks for visceral abdominal fat Reconstructed from pairwise interactions
(A →B) from GR regulated trans-genes (A) with a valid cis-eQTL (Findr P2 ≥ 0.75) against all other
STARNET-visceral abdominal fat genes. Edges represent Bayesian posterior probabilities of
pairwise interaction between genes (nodes). Arrow indicates direction of regulation and
interactions were only retained where parent node (A gene) had at least 4 targets.

CD163 is a haemoglobin scavenger protein that is expressed in macrophages,

the expression of which has likely been captured from macrophages within visceral
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adipose. It is involved in the clearance of hemoglobin/haptoglobin complexes and

may play a role in protection from oxdidative damage from haemoglobin. It has also

been shown to play a role in activating macrophages as part of the inflammatory

response203. LUC7L3, also known as CROP, encodes a protein that is involved in

alternative splicing and is associated with human heart failure204. It has also been

shown to play a role in the inhibition of hepatitis B replication205.

3.3.3 IRF2 targets overrepresented within IRF2 network

Predicted IRF2 transcription factor targets have been previously described as part of

the TRANSFAC dataset. We examined the overlap between predicted IRF2 targets in

TRANSFAC and gene targets within the previously described IRF2 causal networks

in subcutaneous fat. A true network of IRF2 targets would be expected to show

an enrichment of predicted IRF2 targets, compared to what would be expected by

chance.

Fisher’s exact test was used to examine if there is an enrichment of IRF2 targets

within the causal network identified in subcutaneous fat, across different thresh-

olds. At a 10% FDR threshold, the IRF2 network had 128 target genes, 35 of which

were also predicted IRF2 targets (p = 0.08). The strongest enrichment was observed

at the 15% FDR cut off where 104/247 causal targets were also predicted targets of

IRF2 in TRANSFAC (p = 0.005). Decreasing the global FDR beyond this threshold in-

creases the number of TRANSFAC targets within the pool of causal targets, however

at a lower enrichment (p = 0.046).

FDR threshold Findr threshold Network targets IRF2 targets (TRANSFAC) odds ratio P-value

10% FDR 0.87 128 35 1.733 0.080

15% FDR 0.8 247 104 1.903 0.005

20% FDR 0.7 545 229 1.412 0.046

Table 3.9: Fisher’s exact test for IRF2 targets from TRANSFAC predicted targets. STARNET
subcutaneous fat genes used as background for enrichment.

In addition to examining the prevalence of IRF2 targets within the IRF2 causal
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network, we also investigated the overlap between network genes that are also reg-

ulated by GR. Interestingly, we observe that there is an enrichment of ENCODE GR

targets at the 15-20% FDR threshold (p ≤ 0.05). The 15% and 20% networks include

68 and 138 GR targets respectively. No GR enrichment was observed in either CHEA

or TRANSFAC datasets for IRF2 networks.

FDR threshold Findr threshold Network targets GR targets (ENCODE) odds ratio p-value

10% FDR 0.87 128 25 0.894 0.666

15% FDR 0.8 247 68 1.410 0.019

20% FDR 0.7 545 138 1.263 0.022

Table 3.10: Fisher’s exact test for GR targets from ENCODE transcription factor dataset. STARNET
subcutaneous fat genes used as background for enrichment.

3.3.4 Application of independent genetic instruments for gene net-

work reconstruction

To study the impact of instrument selection on the reconstruction of causal net-

works we examined the distribution of local cis-eQTLs for each of the GR regulated

trans-genes that was found to regulate a network. Primary instruments were se-

lected as the strongest cis-eQTL within a 1 Mb window of the associated gene, as

determined by Findr P2 score. However the landscape of gene expression linked ge-

netic variation can involve several loci associated with the expression of the same

gene to differing degrees. In addition to selecting a primary cis-eQTL as an instru-

ment, alternate, independent, instruments were also identified. These were defined

as as the second strongest cis SNP-gene association which was not in LD with the

primary instrument (R2 < 0.5) (Figure S3.15).

Having previously identified trans-genes responsible for the regulation of tran-

scriptional networks, we next aimed to investigate the prevalence of these networks

when using an independent cis-instrument. In each case, an independent instru-

ment associated with the gene in question was identified (Figure 3.6), however causal

analysis was only carried out with the independent instrument if it was valid (Findr
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P2 ≥ 0.75).

Figure 3.6: Cis-eQTL discovery for network drivers. SNP-gene associations within a 1 Mb window of
the associated gene calculated using the Findr secondary linkage test (P2) and presented as 1-findr
score (-log10) with LocusZoom. Lead cis-eQTL is primary instrument used for causal analysis. Red
circle indicates independent (R2 ≤ 0.5) alternate instrument.

Causal relationships in STARNET liver were defined by a GR regulated network

under the regulation of CPEB2 (FDR = 10%) (Figure 3.3). The genetic instrument

used to construct this network, rs62410848 (Findr P2 = 0.90), is the strongest cis-

eQTL for CPEB2, located less than 100 Kb upstream of the CPEB2 locus. An inde-

pendent peak was identified 400 Kb upstream of CPEB2, represented by rs6847363

as the top cis-association in this region (Findr P2 = 0.48). As this independent in-
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strument fell below the required threshold, causal analysis was not carried out using

rs6847363 as an instrument.

To determine the robustness of the primary instrument, we examined cis-associations

with other genes within this locus (± 1 Mb). While CPEB2 was the strongest cis-

eQTL association in this region, rs62410848 was also seen to be associated with

CD38 (Findr P2 = 0.85), a gene ∼800 Kb downstream of CPEB2. Although CD38 is

not associated with any cortisol variants at the SERPINA6/ SERPINA1 locus, it has

been identified as being regulated by glucocorticoids in smooth muscle cells206 and

has been identified as a GR target in ENCODE. However, CD38 does not appear as a

target of CPEB2, which suggests a low P5 score. This suggests that CPEB2 and CD38

are independently associated with rs62410848 and that CPEB2 is the true network

regulator in this cis region.

In STARNET-subcutaneous fat, the IRF2 sub-network was generated using the

SNP rs34985265 (Findr P2 = 0.94), located ∼500 Kb upstream of IRF2. The strongest

independent cis-eQTL for IRF2, rs2171838 (Findr P2 = 0.72), is located closer to IRF2,

∼300 of the IRF2 transcription start site. This association did not reach the associ-

ation threshold for use as a causal instrument (Findr P2 = 0.72). Examining cis-

associations between rs34985265 and all genes within 1 Mb of IRF2, IRF2 is the only

gene to show an association with this SNP.

For RNF13 the primary instrument, rs9853321 (Findr P2 = 0.81), was located in a

peak 400 Kb upstream of the RNF13 transcription start site. The strongest indepen-

dent cis-eQTL, rs62282739, is located nearly 1 Mb downstream of RNF13 and was

too weak to be taken froward for causal analysis (Findr P2 = 0.70). Cis-associations

for rs9853321 in this region, include an association with the gene TM4SF1 (Findr P2

= 0.93) at a higher level than the association with RNF13. There is some indication

of a causal relationship between RNF13 and TM4S1 (Findr score = 0.73), however

TM4S1 is not a target of RNF13 at either a 10% or 15% global FDR threshold, sug-

gesting that TM4S1 is independently associated with rs9853321.

The third subcutaneous fat sub-network was predicted using the SNP rs35571244
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as a cis-eQTL for PBX2 (Findr P2 = 0.93). This SNP is located ∼800 Kb downstream of

the PBX2 transcription start site and is the strongest cis-eQTL for a peak of SNPs in

this region. An alternate cis-eQTL, rs3128947 (Findr P2 = 0.73), is located 500 Kb up-

stream of the PBX2 transcription start site. Again, this cis-eQTL was too weak to be

taken forward for causal analysis. There are 31 cis-associations between rs35571244

and genes within a 1 Mb window of PBX2 at a 15% FDR threshold (Findr P2 ≥ 0.8), of

which PBX2 is the 7th strongest association. Of these cis associations, 10 are causal

targets of PBX2 when using rs35571244 as a genetic instrument at a 15% FDR thresh-

old and 4 are targets at a 10% FDR threshold. This suggests that these genes are not

independently linked to rs35571244, which raises the possibility that these targets

would be predicted from other cis-genes and not just PBX2 specifically.

The primary instrument used to reconstruct the CD163 sub-network in visceral

abdominal fat, rs7954905 (Findr P2 = 0.86), is located less than 100 Kb downstream

of CD163. The strongest independent cis-eQTL, rs2377237 (Findr P2 = 0.72), is lo-

cated ∼500 Kb upstream of the CD163 transcription start site, however this SNP was

below the threshold for use a causal instrument. There were 6 cis-associations at a

15% FDR threshold (Findr P2 ≥ 0.78). One of these cis-genes is a target of CD163

(Findr score = 0.86) at a 15% FDR threshold, but no genes are targets at a 10% FDR

threshold. This target gene is CD163L1, which is a paralog of CD163 located down-

stream of of CD163. The peak represented by rs7954905 is located in the CD163L1

gene body. CD163L1 arose as a gene duplication of CD163 and colocalises with

CD163207.

The primary instrument used to reconstruct the LUC7L3 sub-network, rs6504682

(Findr P2 = 0.8), is located within the LUC7L3 gene body. An independent cis-eQTL,

rs2412130 (Findr P2 = 0.7) is located in a peak ∼1000 Kb upstream of LUC7L3. Again,

this alternate cis-eQTL did not meet the threshold for use as an instrument. There

is only one other cis-gene associated with rs6504682, ANKRD40 (Findr score = 0.81),

however this gene is not a target of LUC7L3 in either the 15% or 10% FDR causal

networks in visceral adipose.
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3.4 Discussion

3.4.1 Cortisol associated trans-genes include genes regulated by

GR

Having previously identified genes associated with genetic variation for plasma cor-

tisol, we aimed to prioritise those where there is prior evidence of regulation by glu-

cocorticoids for causal analysis. Previously published studies have used a variety

of different methods to identify targets of GR, using both high throughput binding

assays and tissue specific perturbation experiments. Using the GR targets identi-

fied from these studies, we were able to identify tissue specific subsets of cortisol

associated trans-genes that have prior evidence of being regulated by GR.

We focused our examination upon the STARNET tissues with the greatest num-

ber of trans-genes identified, specifically liver, subcutaneous fat and visceral ab-

dominal fat. GR associations were identified in all tissues, however most were iden-

tified in subcutaneous fat where 28/54 trans-genes were either present in a tran-

scription factor database for GR, or were shown to be GR regulated in a perturba-

tion experiment. However, it is worth noting that as most of the perturbation based

experiments were specific to subcutaneous fat, increasing the likelihood of identify-

ing GR targets in this tissue. Likewise, as no hepatic specific datasets for GR regula-

tion were employed, it is possible potential GR targets in STARNET liver have been

missed. Trans-genes that have been confirmed as GR targets from multiple sources

of evidence were considered more likely true targets and less likely false positive

findings. This is particularly true for trans-genes that were confirmed as GR targets

from both transcription factor binding studies and perturbation experiments.

In addition to searching systematically for GR targets within the cortisol associ-

ated trans-genes, a look-up approach was used to identify associations with canon-

ical GR targets genes that have been well characterised in the literature, such as

PEPCK 208, GILZ209, LPL210 and PER1211. None of these genes were identified as

trans-genes targets in any STARNET tissue (FDR = 15%), even though several are
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expressed in liver and adipose. Additionally, none of these genes appear as targets

for any networks reconstructed at either 10% or 15% FDR thresholds. The strongest

causal relationship for these genes was detected between RNF13 and TSC22D3 (the

gene that encodes GILZ) (Findr score = 0.76), however following network recon-

struction this relationship was not retained.

We also examined whether in addition to containing genes that are glucocorti-

coid regulated, these trans-gene sets were statistically enriched for GR targets, above

what would be expected by chance. Within the defined trans-gene sets (15% FDR),

enrichment was not observed for GR targets for any tissue. This may be due to a

lack of high quality tissue specific GR sets; as previously mentioned this hampered

the analysis of GR targets in liver due to lack of a hepatic GR target set. As GR is

ubiquitously expressed and regulates a large number of genes, a number of GR tar-

gets would be expected in any random gene set, which raises the threshold of GR-

targets needed to observe enrichment. However, by prioritising those trans-genes

with multiple sources of evidence, it is possible to identify the strongest candidates

for GR regulation within a trans-gene set and reduce the likelihood of identifying

false positive targets.

3.4.2 GR regulated trans-genes mediate transcriptional networks

Having prioritised trans-genes that are regulated by GR, causal inference was used

to identify key regulators of gene networks. Cis-eQTL discovery was carried out in

STARNET to identify cis-eQTLs, that would be suitable for use as genetic instru-

ments. A drawback of this approach is that only genes with a genetic instrument

(e.g. a cis-eQTL) could be included in this analysis. Therefore, any regulatory ef-

fects mediated by GR regulated trans-genes that do not have a cis-eQTL instrument

would be missed. Cis-eQTLs were identified using the Findr P2 method, which was

demonstrated to be robust and comparable to methods such as kruX (Figure S2.12).

Findr P2 measures the strength of association relative to a null distribution of as-

sociations with the genome-wide background, which would correct for SNPs that
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systematically have high associations to all genes. This is useful, as it is important

when selecting cis-instruments that the instrument is not strongly associated with

multiple cis-genes.

Using the instrumental variable test combination in Findr (P2*P5) we identi-

fied pairwise causal relationships between GR regulated trans-genes (A) and target

genes within the corresponding STARNET tissue (B), while using the best eQTL of A

as an instrumental variable. As stated in the chapter introduction (Chapter 3.1.2),

mediation based causal inference performs poorly in response to weak interactions

and hidden confounders, both of which are common features in transcriptomic net-

works. As the instrumental variable test combination requires cis-eQTLs for A to be

used as an instrument, this allows for any E →B interactions to be used as a proxy

for A →B. Although this does result in an increased false positive rate, this has been

previously demonstrated to be a substantial improvement over the large false nega-

tive rate observed with mediation analysis92.

Having used this test combination, networks were reconstructed from the pair-

wise interactions identified from Findr. Both 10% and 15% FDR networks were gen-

erated to examine the difference in number of associations retained across thresh-

old. We filtered these interactions to include only GR trans-genes (A-genes) which

had at least 4 causal targets (B-genes) at a given FDR threshold. These trans-genes

with at least 4 targets corresponded to sub-networks of target genes within the larger

tissue network.

In liver, CPEB2 was the only trans-gene to regulate a causal network at a 10% FDR

threshold. This is also the only trans-gene in liver that appeared in two transcription

factor databases (CHEA and ENCODE), and therefore has the strongest evidence of

being GR regulated out of all of the liver trans-genes. CPEB2 has been annotated

as an RNA binding protein and regulator of transcription, which is suggestive of a

potential biological mechanism whereby it could mediate transcriptional changes.

Additionally, functional enrichment of CPEB2 targets show an enrichment of genes

related to fatty acid oxidation and lipid metabolism. A recent study has also high-
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lighted the role of CPEB2 in the regulation of hormone sensing in mammary gland

and plays a role in the development of ER-positive breast tumors212. The key CPEB2

targets from this manuscript do not appear as targets in the causal CPEB2 networks

with TNFSF11 and CCND1, however this study was carried out in breast cancer cell

lines rather than liver which account for transcriptional differences.

The largest network at a 10% FDR threshold was identified in subcutaneous fat,

composed of three sub-networks driven by the genes RNF13, IRF2 and PBX2. As

IRF2 and PBX2 are both transcription factors, this suggests a biological mechanism

explaining how these genes could be involved in mediating transcription. RNF13

encodes a ubiquitin protein ligase that is linked to the endoplasmic reticulum stress

response198. Protein ubiqutination has been demonstrated to play a role in the

modulation of gene expression213 which could be a possible link for how RNF13

may influence gene expression by mediating changes in target proteins. Interest-

ingly, PKP2 which had the strongest evidence of GR regulation did not appear as a

regulator of a transcriptional network or as a network target.

Interferon regulatory factors are a family of transcription factors that play im-

portant roles in regulating the immune response and signalling. While IRF2 does

not mediate the production of interferons, as with IRF3, IRF5 and IRF7, it has been

shown to play a role in regulatory the inflammatory response in macrophages214

and is involved in the regulation of human keratinocyte stem cell fate215. Chromatin

analysis has also identified a role for IRF2 in the activation of transcription through

binding to gene promoters. In particular, the researchers examined adult and fetal

proerythroblast, demonstrating a preference for binding in adult specific genes re-

lated to type I interferon and interferon gamma signalling216. There were no strong

functional terms, enriched among IRF2 targets, although some key genes include

LDB2 and LIPA which have been shown to play a role in the development of CAD

and atherosclerosis201, with LDB2 appearing as a key regulator of atherosclerosis

from the STAGE study159. Moreover, evidence demonstrating that LDB2 expression

is modulated by cortisol202, may be explained by regulation by IRF2, although fur-

ther research would be required to confirm a mechanism.
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Previously identified IRF2 targets, as predicted from ENCODE, appear enriched

within the IRF2 networks, however at a 15% FDR threshold rather than a 10% thresh-

old. This effect is diminished as the threshold increased from 15% to 20%. Interest-

ingly, in addition to seeing an enrichment of IRF2 predicted targets, at a 15% FDR

threshold there is also an enrichment of GR targets among the targets of the IRF2

network. This is initially somewhat counter-intuitive, considering that IRF2 itself

is GR regulated, the targets of IRF2 would not necessarily be expected to also be

GR regulated. However, this finding may be indicative of a feed-forward loop (FFL)

which is a type of transcriptional motif that is often seen enriched within transcrip-

tional networks217. Feed-forward loops involve two transcription factors (X and Y)

with their own inducers, where X regulates Y, in addition to the targets of Y as well.

Such loops have been noted previously in glucocorticoid biology as a regulatory

model that modulates GR activity218, specifically researchers were able to identify

a FFL driven by GR and the transcription factor KLF15 in murine lungs that is linked

to the regulation of amino acid metabolism and mitochondrial function219. There

is a possibility that IRF2 may be involved in a similar relationship with GR, however

this would require further experiments to test for the presence of such a motif.

An examination of the cis-region of IRF2, reveals a lack of associations between

rs34985265 and any genes other than IRF2. This suggests a lack of pleiotropy inter-

fering with any causal estimates, ensuring that IRF2 is responsible as the regulator

of this network and not another gene in this region. This is not as clear in the case

of PBX2, as the instrument used to predict this network is associated with 31 other

genes in the cis region. Of these, 10 are causal targets of PBX2 at a 15% FDR thresh-

old, which may lead to issues of pleiotropy. In these instances, as the instrument

is associated with both the A and B gene, it is unclear which gene is responsible for

the signal. Likewise, for RNF13 there is an additional cis-association between the

instrument used to construct the RNF13 sub-network outside of RNF13 itself. How-

ever, in this case the other cis gene is not a target of RNF13, suggesting that this is is

not responsible for the RNF13 network.

When considering the impact of transcription factor interactions on gene ex-

105



Glucocorticoid regulated causal gene networks

pression data, there are methodological issues related to these analyses. It has been

noted by Castadldi et al220 that issues relating to data normalisation of gene expres-

sion data have a scale dependent effect on the number of transcription factor in-

teractions identified. Additionally the authors comment on the presence of het-

eroscedasticity when comparing eQTL effect sizes to GWAS effect sizes for common

traits and disease. In this analysis the pre-processing of gene expression data was

consistent across STARNET tissues, which would limit the variability of interactions

across tissues, however this highlights the importance of validation with indepen-

dent datasets. Effect sizes for eQTLs were not used in the causal network analysis,

therefore any issues relating to heteroscedasticity between eQTL and GWAS effect

sizes would have minimal impact on these analyses.

It is worth noting, that although we identify the presence of novel glucocorticoid

regulated gene networks, critical regulators of glucocorticoid and circadian medi-

ated transcription have been previously described in the literature. The nuclear re-

ceptor hepatocyte nuclear factor 4A (HNF4A) plays a pivotal role in the liver tran-

scriptome through the regulation of BMAL1::CLOCK221,222,. resulting in changes

in clock genes. Although HNF4A was not identified as GR regulated trans-gene, it

would be an interesting experiment to see if it would be possible to reconstruct a

network of clock genes using an instrument for HNF4A and Findr. Unfortunately,

although gene expression data for HNF4A are present in STARNET-liver, it does not

have a valid cis-eQTL to use as an instrument. This does highlight a drawback of in-

strumental variable analysis, as biological signals may be missed if an appropriate

instrument is not available.
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3.5 Conclusion

In this chapter we have demonstrated that there are a sub-set of genes trans-associated

with genetic variation for plasma cortisol in liver, that are targets of GR. Moreover,

we have identified key genes that are regulators of GR regulated gene networks in

liver, subcutaneous and visceral abdominal adipose. These gene networks are reg-

ulated by genes such as CPEB2 which links to transcriptional regulation and IRF2,

a transcription factor whose targets are enriched within the IRF2 sub-network. In

summary, these networks help to characterise the downstream consequences of ge-

netic variation for plasma cortisol through a mechanism that is mediated by GR.
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3.6 Supplementary data

Trans-genes

yes no

GR-regulated
yes

no

Table 3.11: Example of 2x2 contingency table used to measure GR enrichment within a trans-gene
set using Fisher’s exact test.
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A-genes B-genes Findr score GR count

CPEB2 HADHA 0.994 2

CPEB2 C5orf15 0.975 2

CPEB2 CCDC47 0.954 2

CPEB2 HADHB 0.943 2

CPEB2 TRUB2 0.939 2

CPEB2 IMMT 0.931 2

CPEB2 SH3BGRL2 0.920 2

CPEB2 ARHGAP5 0.919 2

CPEB2 ITGB1 0.916 2

CPEB2 AGL 0.910 2

CPEB2 MTRNR2L3 0.907 2

CPEB2 PPP1R12A 0.904 2

CPEB2 GOLGA5 0.904 2

CPEB2 MRPL35 0.903 2

CPEB2 STX4 0.902 2

CPEB2 THRAP3 0.898 2

CPEB2 UGGT1 0.897 2

CPEB2 ARPC2 0.892 2

CPEB2 HSDL2 0.888 2

CPEB2 CPT1A 0.886 2

CPEB2 DSN1 0.884 2

CPEB2 RP1-232L22__B.1 0.882 2

CPEB2 HSD17B4 0.881 2

CPEB2 APOA5 0.879 2

CPEB2 NF2 0.877 2

CPEB2 LIMS2 0.876 2

CPEB2 UBE2E1 0.875 2

CPEB2 KIAA0368 0.872 2

CPEB2 HMGN3 0.871 2

CPEB2 ETFDH 0.870 2

CPEB2 FOXN2 0.866 2

CPEB2 FAM126B 0.866 2

CPEB2 RP5-1024G6.2 0.864 2

CPEB2 RHOBTB3 0.863 2

CPEB2 CYP2J2 0.863 2

CPEB2 SLC25A24 0.863 2

CPEB2 IWS1 0.861 2

CPEB2 MED13 0.859 2

CPEB2 USP47 0.857 2

CPEB2 MTRNR2L8 0.857 2

CPEB2 NBEAL1 0.857 2

CPEB2 ERO1L 0.856 2

CPEB2 ABCB4 0.856 2

CPEB2 MTRNR2L9 0.855 2

Table 3.12: All pairwise interactions from Findr (P2*P5) in liver at a 10% FDR threshold.
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A-genes B-genes Findr score GR count

IRF2 TLE4 0.982 2

IRF2 BLVRA 0.982 2

IRF2 KDELR1 0.958 2

IRF2 MAPRE2 0.956 2

IRF2 B4GALT3 0.954 2

IRF2 SNRPD1 0.953 2

IRF2 TRIB2 0.950 2

IRF2 FAM206A 0.949 2

IRF2 SPAG7 0.944 2

IRF2 PSMD9 0.944 2

IRF2 ATP7B 0.944 2

IRF2 MTRNR2L12 0.943 2

PBX2 SUPT4H1 0.943 1

IRF2 SMARCA1 0.943 2

IRF2 EIF3B 0.940 2

IRF2 LDB2 0.937 2

IRF2 HERPUD2 0.937 2

IRF2 KIAA2013 0.935 2

IRF2 CCDC47 0.935 2

IRF2 DPM2 0.933 2

IRF2 RNF5 0.932 2

RNF13 SMC4 0.931 3

IRF2 RPL29 0.931 2

RNF13 ARL14EP 0.930 3

RNF13 PSKH1 0.930 3

IRF2 WNK1 0.930 2

IRF2 ARPC5L 0.930 2

RNF13 SNW1 0.930 3

PBX2 PGK1 0.930 1

IRF2 CCT3 0.930 2

RNF13 KIAA1009 0.930 3

RNF13 ZCCHC6 0.928 3

IRF2 CRTC2 0.928 2

IRF2 CDIPT 0.928 2

IRF2 CMIP 0.926 2

IRF2 PORCN 0.924 2

IRF2 RFX2 0.924 2

IRF2 RNF167 0.924 2

RNF13 ZHX1 0.923 3

RNF13 ATAD1 0.922 3

RNF13 NEMF 0.922 3

RNF13 ZNF441 0.922 3

RNF13 PRPF40A 0.922 3

RNF13 RAB6A 0.922 3

RNF13 IFNGR1 0.922 3

RNF13 ZEB1 0.922 3

RNF13 ARL8B 0.922 3
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RNF13 CDS2 0.922 3

RNF13 RP11-521C20.1 0.922 3

RNF13 CENPC 0.922 3

RNF13 PRPF38B 0.921 3

RNF13 LRRCC1 0.921 3

RNF13 CRYZL1 0.921 3

RNF13 ANKRD49 0.921 3

RNF13 ZNF624 0.921 3

RNF13 MNS1 0.921 3

RNF13 GABARAP 0.921 3

IRF2 MANF 0.920 2

RNF13 ZNF510 0.920 3

RNF13 PLEKHA5 0.920 3

RNF13 TOB2 0.920 3

IRF2 GSK3A 0.919 2

RNF13 ZNF43 0.919 3

RNF13 PITPNB 0.919 3

RNF13 TUBD1 0.919 3

RNF13 NT5C3A 0.919 3

RNF13 ING3 0.919 3

RNF13 POLDIP3 0.919 3

RNF13 DENND4A 0.919 3

RNF13 THAP1 0.919 3

RNF13 RP11-466P24.2 0.919 3

RNF13 ZNF429 0.918 3

RNF13 ZNF708 0.918 3

RNF13 BZW1P2 0.918 3

RNF13 TAOK3 0.918 3

RNF13 PHF20L1 0.917 3

RNF13 CAPZB 0.917 3

IRF2 RFC1 0.917 2

IRF2 KXD1 0.917 2

RNF13 RTCA 0.917 3

RNF13 SLA 0.916 3

RNF13 CLMP 0.916 3

RNF13 DIMT1 0.916 3

RNF13 DROSHA 0.916 3

RNF13 ZNF260 0.916 3

RNF13 HNRNPK 0.916 3

RNF13 ZNF197 0.915 3

IRF2 EPRS 0.914 2

RNF13 C4orf27 0.914 3

RNF13 LRP12 0.914 3

RNF13 SEC62 0.914 3

IRF2 CYB5R1 0.913 2

RNF13 CLIP1 0.913 3

RNF13 TMF1 0.912 3

IRF2 DNPEP 0.912 2

111



Glucocorticoid regulated causal gene networks

RNF13 PPIA 0.912 3

RNF13 VRK1 0.912 3

RNF13 SUMO1 0.912 3

IRF2 CLDN15 0.912 2

RNF13 MTND6P12 0.912 3

IRF2 FMO4 0.911 2

IRF2 RP11-750H9.5 0.911 2

IRF2 TMEM109 0.911 2

IRF2 PDZRN4 0.911 2

IRF2 PRKRIP1 0.911 2

IRF2 SCAF4 0.911 2

RNF13 FAF1 0.911 3

IRF2 UBE2D3 0.911 2

RNF13 TMEM161B 0.911 3

IRF2 PSMC3 0.911 2

IRF2 NAA38 0.911 2

IRF2 ZFPL1 0.911 2

RNF13 ZNF506 0.910 3

IRF2 ZNF765 0.910 2

RNF13 ZNF37A 0.910 3

IRF2 TUFT1 0.910 2

IRF2 PATL1 0.910 2

IRF2 LIPA 0.910 2

IRF2 EIF3D 0.910 2

RNF13 PTBP2 0.909 3

IRF2 TAF4 0.909 2

IRF2 CTB-36O1.7 0.909 2

IRF2 AMZ2 0.909 2

RNF13 NARS2 0.908 3

RNF13 PCGF6 0.908 3

RNF13 ATP1B1 0.908 3

RNF13 EEA1 0.908 3

RNF13 ARID4A 0.907 3

RNF13 NAA50 0.907 3

RNF13 SCP2 0.906 3

RNF13 PRIM1 0.906 3

IRF2 GTF2F1 0.905 2

RNF13 DNAJC15 0.905 3

RNF13 COIL 0.905 3

RNF13 JPH2 0.905 3

RNF13 GTF2B 0.905 3

RNF13 MOSPD1 0.905 3

IRF2 GOLGA7 0.905 2

IRF2 NOL12 0.905 2

RNF13 USP8 0.904 3

RNF13 LINC00476 0.904 3

RNF13 SAFB2 0.904 3

RNF13 KTN1 0.904 3
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RNF13 MTO1 0.904 3

IRF2 SUV420H1 0.904 2

RNF13 CRBN 0.904 3

IRF2 RPRD1B 0.903 2

RNF13 HIF1AN 0.903 3

RNF13 NBN 0.903 3

IRF2 WBP1 0.902 2

IRF2 PPM1G 0.902 2

IRF2 KCMF1 0.902 2

IRF2 PFDN2 0.902 2

RNF13 CEP41 0.902 3

RNF13 MIS18BP1 0.902 3

IRF2 NUMB 0.901 2

RNF13 HOXB7 0.901 3

IRF2 NPRL3 0.901 2

RNF13 RP11-181C21.4 0.901 3

RNF13 RARS 0.901 3

IRF2 SCAF11 0.901 2

RNF13 GLO1 0.901 3

RNF13 SLC9B2 0.901 3

IRF2 UBL7 0.901 2

IRF2 PAF1 0.901 2

RNF13 RBBP6 0.900 3

RNF13 NOL8 0.900 3

RNF13 ZMAT1 0.900 3

RNF13 GS1-251I9.4 0.900 3

RNF13 FAM45A 0.900 3

RNF13 MTND5P4 0.900 3

PBX2 PPP1R11 0.900 1

RNF13 ITFG1 0.900 3

RNF13 YWHAQ 0.900 3

RNF13 CMTM6 0.900 3

RNF13 ZNF626 0.900 3

RNF13 CEP250 0.900 3

RNF13 KIAA1731 0.900 3

RNF13 PRPF4B 0.900 3

RNF13 ESCO1 0.900 3

RNF13 RP11-417J8.6 0.900 3

RNF13 RNF103 0.900 3

RNF13 MTND5P16 0.900 3

RNF13 AP3D1 0.899 3

RNF13 BTBD7 0.899 3

RNF13 ZNF655 0.899 3

RNF13 ZNF273 0.899 3

RNF13 CASP3 0.899 3

RNF13 NUP35 0.899 3

RNF13 ZNF814 0.899 3

RNF13 HYI 0.899 3

113



Glucocorticoid regulated causal gene networks

RNF13 ABCB7 0.899 3

RNF13 ZNF329 0.899 3

RNF13 TFB2M 0.899 3

RNF13 PPP6C 0.899 3

RNF13 CEP128 0.899 3

RNF13 UQCRC2 0.899 3

IRF2 AAMP 0.898 2

RNF13 MFAP3 0.898 3

RNF13 BRK1 0.898 3

RNF13 MAPRE1 0.898 3

RNF13 CNOT7 0.898 3

IRF2 HSP90B1 0.898 2

RNF13 ACBD6 0.898 3

IRF2 GPATCH4 0.898 2

RNF13 AIFM1 0.898 3

IRF2 EIF3A 0.898 2

RNF13 ZDHHC21 0.898 3

RNF13 GPR107 0.897 3

IRF2 TK2 0.897 2

IRF2 CREBBP 0.896 2

RNF13 DDX59 0.896 3

RNF13 PMPCB 0.896 3

RNF13 FAM53B 0.896 3

RNF13 TM9SF2 0.896 3

IRF2 CBL 0.896 2

RNF13 PCNP 0.895 3

RNF13 RP11-225B17.2 0.895 3

RNF13 RBM7 0.895 3

IRF2 UBQLN2 0.895 2

IRF2 TMEM186 0.895 2

IRF2 TTC4 0.895 2

RNF13 BRWD1 0.894 3

RNF13 RB1CC1 0.894 3

RNF13 SLC39A10 0.894 3

RNF13 TSN 0.894 3

RNF13 MTND1P27 0.893 3

RNF13 UBB 0.893 3

RNF13 PKP4 0.893 3

RNF13 KCTD6 0.893 3

IRF2 ANGEL1 0.893 2

RNF13 IWS1 0.892 3

RNF13 GOLGA7 0.892 3

RNF13 LSM14A 0.892 3

RNF13 KIAA0368 0.892 3

RNF13 ASCC3 0.892 3

RNF13 THOC2 0.891 3

RNF13 EGLN1 0.891 3

IRF2 MECP2 0.891 2
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IRF2 PSMA5 0.891 2

RNF13 NEGR1 0.891 3

RNF13 CA5BP1 0.891 3

RNF13 GBE1 0.890 3

RNF13 TRIP11 0.890 3

IRF2 PRPS1 0.890 2

IRF2 DPF2 0.890 2

RNF13 ITGB1P1 0.890 3

RNF13 RSL1D1 0.890 3

IRF2 MCM3 0.890 2

RNF13 SBNO1 0.890 3

RNF13 UBQLN1 0.890 3

IRF2 TBX3 0.890 2

RNF13 SLC25A40 0.890 3

RNF13 NPAT 0.889 3

RNF13 DDHD2 0.889 3

IRF2 RNF38 0.889 2

RNF13 AIF1 0.889 3

IRF2 CLASP2 0.889 2

RNF13 PARN 0.889 3

RNF13 ZNF507 0.889 3

IRF2 TNFSF12 0.889 2

RNF13 NPM1P27 0.889 3

RNF13 MTND1P20 0.889 3

RNF13 RBM25 0.889 3

RNF13 ZNF107 0.888 3

RNF13 C16orf72 0.888 3

RNF13 CCDC171 0.888 3

IRF2 DNAJC17 0.888 2

RNF13 RP11-97I14.1 0.888 3

IRF2 RANBP10 0.887 2

RNF13 CKAP5 0.887 3

IRF2 PIGV 0.887 2

IRF2 VPS33B 0.887 2

IRF2 PHYH 0.887 2

RNF13 RMND5A 0.886 3

RNF13 SYPL1 0.886 3

RNF13 CDV3 0.886 3

IRF2 FUCA2 0.886 2

IRF2 PHKA2 0.886 2

IRF2 PROSER1 0.886 2

IRF2 DDX5 0.885 2

RNF13 PTS 0.885 3

IRF2 NAT6 0.885 2

IRF2 PES1 0.885 2

RNF13 CCNH 0.885 3

RNF13 HSPA9 0.885 3

RNF13 ESF1 0.885 3
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RNF13 ZBTB7A 0.885 3

RNF13 DHX8 0.885 3

IRF2 CARS 0.884 2

RNF13 UBE2B 0.884 3

RNF13 ERH 0.883 3

RNF13 SHQ1 0.883 3

RNF13 HAUS2 0.883 3

IRF2 SIK3 0.883 2

IRF2 MED14 0.883 2

IRF2 CCDC137 0.883 2

IRF2 SRRT 0.883 2

RNF13 PSMD14 0.883 3

RNF13 AHI1 0.882 3

IRF2 HENMT1 0.882 2

RNF13 HBS1L 0.882 3

RNF13 GNAS 0.882 3

RNF13 RAB11FIP2 0.882 3

RNF13 RP5-874C20.3 0.882 3

IRF2 IKBIP 0.882 2

IRF2 FCHO2 0.881 2

RNF13 SSR1 0.881 3

IRF2 DCAKD 0.881 2

RNF13 ETF1 0.881 3

RNF13 TENM1 0.880 3

RNF13 NDUFS3 0.880 3

IRF2 C3orf18 0.880 2

IRF2 RPGRIP1L 0.879 2

RNF13 FAM134A 0.879 3

RNF13 NUBP1 0.879 3

RNF13 METTL13 0.878 3

RNF13 DMXL1 0.878 3

IRF2 MAPKAPK5 0.878 2

IRF2 CLN3 0.877 2

IRF2 CREG1 0.877 2

RNF13 NOL9 0.877 3

IRF2 ARNTL2 0.877 2

RNF13 BET1 0.877 3

RNF13 TFCP2 0.877 3

IRF2 SEMA6C 0.876 2

RNF13 MYO9A 0.876 3

IRF2 B3GNT2 0.875 2

IRF2 PPP1R26 0.875 2

RNF13 PPP1R12A 0.875 3

RNF13 DNAJC2 0.875 3

RNF13 HNRNPA3P6 0.874 3

IRF2 ZNF480 0.874 2

IRF2 ZNF594 0.874 2

IRF2 RNASEH2C 0.874 2
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PBX2 PPT2 0.874 1

PBX2 SYNGAP1 0.874 1

PBX2 TBL2 0.873 1

PBX2 VARS 0.873 1

PBX2 MANSC1 0.873 1

PBX2 RBM42 0.873 1

PBX2 LDB2 0.873 1

PBX2 CLASP2 0.873 1

PBX2 HGSNAT 0.873 1

IRF2 TMEM143 0.873 2

PBX2 EPN2 0.873 1

PBX2 CTC-503J8.6 0.873 1

PBX2 LEPRE1 0.873 1

PBX2 SLC38A9 0.873 1

PBX2 TNKS2 0.873 1

PBX2 MCM3AP 0.873 1

PBX2 DNAJC1 0.873 1

PBX2 MBD6 0.873 1

PBX2 RAB1B 0.873 1

PBX2 CTDP1 0.873 1

PBX2 SH2B3 0.873 1

PBX2 ERCC5 0.873 1

PBX2 RPL10 0.873 1

PBX2 DCTN1 0.873 1

PBX2 ZNF76 0.873 1

PBX2 TRA2A 0.873 1

PBX2 MED14 0.873 1

PBX2 IFITM1 0.873 1

PBX2 HNRNPA0 0.873 1

PBX2 GUCY1B3 0.873 1

PBX2 PSMB9 0.873 1

RNF13 RNF146 0.873 3

PBX2 CCDC86 0.873 1

PBX2 HOXD-AS1 0.873 1

PBX2 PIAS1 0.873 1

PBX2 PTEN 0.873 1

PBX2 HSP90B1 0.873 1

PBX2 ANXA11 0.873 1

PBX2 SLC35F6 0.873 1

PBX2 SEC22B 0.873 1

PBX2 DDX19B 0.873 1

PBX2 FUT11 0.873 1

PBX2 CPNE8 0.873 1

PBX2 C12orf4 0.873 1

RNF13 AF186192.5 0.873 3

PBX2 KIAA1377 0.873 1

PBX2 FAM134B 0.873 1

PBX2 CAMK1 0.873 1
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PBX2 RP11-804A23.4 0.873 1

PBX2 SPNS2 0.873 1

PBX2 ZNF101 0.873 1

PBX2 ATP5G2 0.873 1

PBX2 DENND1A 0.873 1

PBX2 SUV39H1 0.873 1

PBX2 IPO4 0.873 1

PBX2 DAZAP2 0.873 1

PBX2 RBPMS 0.873 1

PBX2 SUMO2 0.873 1

RNF13 CMC1 0.873 3

PBX2 MKL2 0.873 1

PBX2 ERF 0.872 1

PBX2 BACE1 0.872 1

PBX2 ARHGEF12 0.872 1

PBX2 EDEM2 0.872 1

PBX2 HINT2 0.872 1

PBX2 SELL 0.872 1

IRF2 ARID1A 0.872 2

PBX2 TMEM245 0.872 1

PBX2 SF3B5 0.872 1

RNF13 RABGGTB 0.872 3

PBX2 NOL10 0.872 1

PBX2 SUPT20H 0.872 1

PBX2 SEL1L 0.872 1

PBX2 C2orf16 0.872 1

PBX2 UBE2E1 0.872 1

PBX2 COL1A2 0.872 1

PBX2 KIAA1671 0.872 1

PBX2 YARS 0.872 1

PBX2 CFDP1 0.872 1

PBX2 ARRDC1 0.872 1

PBX2 NEK11 0.872 1

PBX2 ATF2 0.872 1

PBX2 RAB8B 0.872 1

PBX2 AARS 0.872 1

PBX2 AIMP1 0.872 1

PBX2 TNFRSF14 0.872 1

PBX2 TARS 0.872 1

PBX2 TMCO4 0.872 1

PBX2 SLC23A2 0.872 1

PBX2 VASH1 0.872 1

PBX2 WBP5 0.872 1

PBX2 PDCL 0.872 1

PBX2 PRNP 0.872 1

PBX2 CNEP1R1 0.872 1

PBX2 NANS 0.872 1

IRF2 GABARAP 0.872 2
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PBX2 KLHL15 0.872 1

PBX2 PSENEN 0.872 1

PBX2 MTHFD1L 0.872 1

PBX2 ZKSCAN8 0.872 1

PBX2 PRPF6 0.872 1

PBX2 ID2 0.872 1

PBX2 TMEM138 0.872 1

PBX2 PES1 0.872 1

PBX2 EBNA1BP2 0.872 1

PBX2 HM13 0.872 1

PBX2 HNRNPL 0.872 1

IRF2 DBP 0.872 2

PBX2 GOLGA7 0.872 1

PBX2 NOTCH4 0.872 1

PBX2 MYCT1 0.872 1

PBX2 EIF1AXP1 0.871 1

PBX2 ACP2 0.871 1

PBX2 TUBE1 0.871 1

PBX2 CSNK1E 0.871 1

PBX2 PCCB 0.871 1

PBX2 HPCAL1 0.871 1

PBX2 ACADVL 0.871 1

PBX2 RBM14 0.871 1

PBX2 CD59 0.871 1

PBX2 ABCA3 0.871 1

PBX2 SIL1 0.871 1

IRF2 C5orf22 0.871 2

PBX2 DDB1 0.871 1

PBX2 ISCA1 0.871 1

PBX2 ZBTB5 0.871 1

PBX2 RPS7P1 0.871 1

PBX2 MAGI2-AS3 0.871 1

PBX2 LETM1 0.871 1

PBX2 TMEM101 0.871 1

PBX2 RNF40 0.871 1

PBX2 POLR2F 0.871 1

PBX2 CALR 0.871 1

RNF13 LIN9 0.871 3

IRF2 SND1 0.871 2

PBX2 TMEM50A 0.871 1

PBX2 VMP1 0.871 1

PBX2 ZHX1 0.870 1

PBX2 MRPS5 0.870 1

PBX2 RBFA 0.870 1

PBX2 SNX7 0.870 1

PBX2 RP11-750B16.1 0.870 1

PBX2 CENPO 0.870 1

PBX2 DAD1 0.870 1
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PBX2 RPL10AP6 0.870 1

PBX2 CDC42SE1 0.870 1

Table 3.13: All pairwise interactions from Findr (P2*P5) in subcutaneous fat at a 10% FDR threshold.

Figure 3.7: Subcutaneous fat network network reconstructed from STARNET-subcutaneous fat at
10% FDR and filtered to only include interactions for RNF13. Arrows indicate direction of
regulation.
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Figure 3.8: Subcutaneous fat network network reconstructed from STARNET-subcutaneous fat at
10% FDR and filtered to only include interactions for IRF2. Arrows indicate direction of regulation.

Figure 3.9: Subcutaneous fat network network reconstructed from STARNET-subcutaneous fat at
10% FDR and filtered to only include interactions for PBX2. Arrows indicate direction of regulation.
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A-genes B-genes Findr score GR count

LUC7L3 TMEM123 0.994 2

CD163 NDUFB9 0.977 1

LUC7L3 CCNI 0.950 2

LUC7L3 KHDRBS1 0.933 2

LUC7L3 KALRN 0.915 2

LUC7L3 MRPS30 0.915 2

LUC7L3 RB1 0.913 2

LUC7L3 DLGAP4 0.912 2

CD163 CYB5R1 0.904 1

LUC7L3 ZNF639 0.901 2

LUC7L3 IMPAD1 0.886 2

LUC7L3 ARMC8 0.876 2

LUC7L3 CUL4B 0.872 2

CD163 DESI2 0.861 1

CD163 TMEM98 0.861 1

Table 3.14: All pairwise interactions from Findr (P2*P5) in visceral abdominal fat at a 10% FDR
threshold.
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Tissue Gene name Ensembl gene ID Primary instrument Primary Findr score Independent instrument Independent Findr score

liver ALG5 ENSG00000120697 rs9576151 1.00 rs731877 0.97

liver NUCB2 ENSG00000070081 rs214080 1.00 rs199782153 1.00

liver FOXN2 ENSG00000170802 rs79073127 1.00 rs7566996 1.00

liver YBX3 ENSG00000060138 rs11053915 1.00 rs35166079 0.98

liver PTPN12 ENSG00000127947 rs7783866 1.00 rs56111978 1.00

liver SERPINA6 ENSG00000170099 rs2736898 1.00 rs7161231 0.94

liver TOR4A ENSG00000198113 rs28567631 1.00 rs12004799 0.61

liver RABEP1 ENSG00000029725 rs56176579 0.99 rs199634929 0.78

liver RDX ENSG00000137710 rs7107823 0.97 rs55969611 0.78

liver MAPK11 ENSG00000185386 rs742186 0.96 rs4838867 0.95

liver CPEB2 ENSG00000137449 rs62410848 0.90 rs6847363 0.48

liver DNM1L ENSG00000087470 rs11052028 0.86 rs4931017 0.75

liver SLC26A1 ENSG00000145217 rs3733346 0.84 rs33965806 0.61

liver PCSK5 ENSG00000099139 rs11145221 0.74 rs5898407 0.56

liver ZNF649 ENSG00000198093 rs6509633 0.73 rs34110879 0.72

liver NAB2 ENSG00000166886 rs34577247 0.61 rs4759254 0.55

liver EIF3H ENSG00000147677 rs1569365 0.44 rs11775371 0.43

subcutaneous fat OSMR ENSG00000145623 rs13165709 1.00 rs11949864 1.00

subcutaneous fat AUTS2 ENSG00000158321 rs2141205 1.00 rs36018096 0.93

subcutaneous fat PDZD8 ENSG00000165650 rs149832558 1.00 rs363237 1.00

subcutaneous fat KHK ENSG00000138030 rs7560144 1.00 rs12714026 1.00

subcutaneous fat ATP5J2 ENSG00000241468 rs138229375 1.00 rs74774557 1.00

subcutaneous fat PPCDC ENSG00000138621 rs3812943 1.00 rs8042558 1.00

subcutaneous fat PGM1 ENSG00000079739 rs139945547 1.00 rs2269267 1.00

subcutaneous fat PHYH ENSG00000107537 rs6602646 1.00 rs2484528 1.00

subcutaneous fat AMPD3 ENSG00000133805 rs11042759 1.00 rs2957658 1.00

subcutaneous fat PKP2 ENSG00000057294 rs12825217 1.00 rs11052277 0.99

subcutaneous fat STAT4 ENSG00000138378 rs4341966 1.00 rs11691372 1.00

subcutaneous fat ATG13 ENSG00000175224 rs61882678 0.99 rs112018914 0.63

subcutaneous fat PLD1 ENSG00000075651 rs10936700 0.97 rs13068741 0.74

subcutaneous fat IRF2 ENSG00000168310 rs34985265 0.94 rs2171838 0.72

subcutaneous fat PBX2 ENSG00000204304 6:32853219 0.93 rs3128947 0.73

subcutaneous fat XPNPEP1 ENSG00000108039 rs3780953 0.90 rs143664187 0.71

subcutaneous fat RNF13 ENSG00000082996 rs9853321 0.81 rs62282739 0.70

subcutaneous fat ZC3H7B ENSG00000100403 rs9611739 0.77 rs2267429 0.71

subcutaneous fat KLHDC1 ENSG00000197776 rs61984263 0.71 rs2883893 0.70

subcutaneous fat ME2 ENSG00000082212 rs8092419 0.71 rs2586777 0.59

subcutaneous fat ENSA ENSG00000143420 rs111906083 0.70 rs191222557 0.43

subcutaneous fat MAMDC2 ENSG00000165072 rs78116045 0.60 rs149208553 0.56

subcutaneous fat HSPG2 ENSG00000142798 rs76643224 0.58 rs7513223 0.55

subcutaneous fat LHFPL2 ENSG00000145685 rs74347692 0.58 rs4704459 0.56

subcutaneous fat PDIA5 ENSG00000065485 rs72285796 0.49 rs73186456 0.42

subcutaneous fat FOS ENSG00000170345 rs11627282 0.44 rs2240624 0.39

visceral abdominal fat NNT ENSG00000112992 rs6451720 1.00 rs11951515 1.00

visceral abdominal fat DTNA ENSG00000134769 rs71363449 1.00 rs9950794 0.77

visceral abdominal fat ULK2 ENSG00000083290 rs79506397 0.88 rs1634418 0.47

visceral abdominal fat CD163 ENSG00000177575 rs73059776 0.86 rs2377237 0.72

visceral abdominal fat LUC7L3 ENSG00000108848 rs6504682 0.80 rs2412130 0.70

visceral abdominal fat DENR ENSG00000139726 rs73230017 0.76 rs201556706 0.47

visceral abdominal fat ATL1 ENSG00000198513 rs61543335 0.76 rs11849026 0.59

visceral abdominal fat BNC2 ENSG00000173068 rs10810646 0.75 rs4961707 0.69

visceral abdominal fat REEP5 ENSG00000129625 rs79334785 0.74 rs153562 0.73

visceral abdominal fat CXCL14 ENSG00000145824 rs72802346 0.74 rs62366015 0.56

visceral abdominal fat ANKFY1 ENSG00000185722 rs9891529 0.70 rs9912501 0.68

visceral abdominal fat GNG2 ENSG00000186469 rs59825463 0.68 rs17124893 0.54

visceral abdominal fat SLC27A2 ENSG00000140284 rs17509944 0.68 rs934633 0.54

visceral abdominal fat LPIN1 ENSG00000134324 rs79911731 0.64 rs11365598 0.64

visceral abdominal fat CSRNP3 ENSG00000178662 rs61553904 0.62 rs10203713 0.61

visceral abdominal fat UBE3A ENSG00000114062 rs112605074 0.59 rs185740871 0.57

visceral abdominal fat DLG1 ENSG00000075711 rs9325375 0.59 rs9820797 0.53

visceral abdominal fat WAPAL ENSG00000062650 rs72404633 0.57 rs7086163 0.50

visceral abdominal fat BCL7B ENSG00000106635 rs73134935 0.50 rs78703841 0.49

visceral abdominal fat CAV2 ENSG00000105971 rs201679967 0.43 rs62476996 0.43

Table 3.15: All primary and independent instruments identified for GR regulated trans-genes (FDR
= 15%) in liver, subcutaneous fat and visceral abdominal fat.
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Chapter 4

Replication of cortisol associated

trans-genes and networks

4.1 Introduction

4.1.1 Replication of cortisol associated trans-genes

In Chapter 2, we described the identification of genetic variants associated with

plasma cortisol and how these can be linked to tissue specific gene expression within

the STARNET dataset. STARNET was selected for studying the impact of genetic

variation for plasma cortisol, as it contains a sufficiently high number of individ-

uals to detect small effect sizes commonly associated with complex traits223. Fur-

thermore, it presented an opportunity to examine the role of cortisol linked gene

expression in different tissues, taken from the same individuals and sampled at the

same time. The STARNET cohort is also composed of individuals who have been

diagnosed with CAD, making this an appropriate cohort for examining how genetic

variation for cortisol may impact CVD linked phenotypes.

In this chapter we aimed to see if the trans-associations identified in STARNET

were robust and were represented in independent cohorts, outside of STARNET.
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Trans-gene associations tend to be weaker than their cis counterparts, however have

been predicted to contribute to high levels of complex trait heritability223. Cis-

eQTLs can often be mapped to cis-regulatory elements, which can be involved in di-

rect regulation of the associated gene54. However, the biology underpinning trans-

eQTL associations is often more challenging to uncover and can involve indirect

mechanisms of regulation, sometimes acting in conjunction with cis-eQTLs55.

Trans-associations are often challenging to replicate in independent datasets,

whereby SNPs can be associated with multiple transcripts, either alluding to inter-

mediate genes in a causal pathway or as the result of an increased false positive

rate224. Pierce and colleagues sought to describe the interplay between different

cis and trans action. Following the identification of 21 trans-associations that were

shown to be mediated by a cis-eQTL, the researchers were able to replicate 7 of these

associations in an independent cohort225. Although trans-eQTLs have been linked

to heritability for complex traits223, Yap et al report a lack of enrichment of trans-

eQTLs and GWAS associated SNPs in blood226, highlighting the difficulty in parsing

functional variants from large sets of trans-associations.

Results from chapter 2 have shown trans-associations to be highly tissue spe-

cific. The most high profile example of the role of tissue specificity and gene ex-

pression can be seen in the latest release from the GTEx consortium66. This dataset

has characterised the gene expression landscape across 49 tissues from 838 post-

mortem donors and shows that tissue specificity and cell composition are key fac-

tors in linking genetic variation to mechanism66. Therefore, it is important when

attempting to replicate trans-genes that replication is attempted in a comparable

tissue set.

The first replication cohort considered for this project, was from the Metabolic

Syndrome in Men study (METSIM), a population based study examining Finnish

men that was conducted between 2005-2010227. Within this study, there are 982 in-

dividuals who underwent genotyping and whole exome sequencing and there are

expression data for 434 individuals in this cohort obtained from subcutaneous fat
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biopsies. The METSIM authors initially aimed to use the study to identify factors as-

sociated with the development of type II diabetes and CVD and since then METSIM

has been used to identify inflammatory markers associated with insulin secretion

and sensitivity228.

METSIM was identified as an avenue for replicating cortisol associated trans-

genes that were identified in STARNET-subcutaneous fat and access to the dataset

was obtained through the Database of Genotypes and Phenotypes (dbGaP). The

availability of individuals genotypes meant that it was possible to link cortisol as-

sociated SNPs to gene transcripts in subcutaneous fat. Furthermore, where cortisol

linked SNPs are unavailable it is possible to compare patterns of gene expression in

METSIM to those in STARNET.

A second replication cohort was considered from a recent study by the BIO-

CORT consortium229, using a perturbation based approach to examine variation in

gene expression in response to glucocorticoid treatment. This was a randomised,

crossover, doubleblind study of 10 individuals with primary adrenal insufficiency.

Individuals in the study were randomised to either intravenous saline or hydrocor-

tisone, and microarray analysis was used to measure gene expression in both pe-

ripheral blood mononuclear cells (PBMCs) and abdominal subcutaneous adipose

tissue.

Both METSIM and BIOCORT represent an approach to validate genes associated

with plasma cortisol within STARNET tissues. By comparing genes that are differen-

tially expressed in response to cortisol treatment, to genes that are associated with

genetic variation for plasma cortisol this is a useful approach to identify genes where

there is strong evidence for a cortisol response.

4.1.2 Replication of glucocorticoid regulated gene networks

Having first identified genes that are associated with plasma cortisol, in Chapter

3 we describe a subset of these trans-genes that are both regulated by glucocorti-
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coids and in turn regulate a network of target genes in the same tissue where they

are associated with cortisol. As with the trans-gene associations, tissue specificity is

important when making a comparison of gene networks in an independent dataset.

In addition, target specificity is also important to see if the same regulators are tar-

geting the same genes when using different data.

An example of targeted replication of gene networks includes work by Small et

al, in follow-up experiments of a type II diabetes associated gene network in adipose

tissue. Having identified a key cis-eQTL for KLF14, the researchers then followed up

by examining the role of a murine KLF14 knockout model and replicating some of

the network target genes in murine adipose105.

Talukdar and colleagues also used data from an animal model to validate gene

regulatory networks identified from the STAGE dataset. Using data from the hybrid

mouse diversity panel, consisting of different strains of mice with broad phenotypic

variation. the researchers sought to replicate 26 CAD related gene networks by ex-

amining how well the networks segregated among mice with CAD related traits.

Overall the researchers were able to show that 12 of their 26 networks segregated

according to phenotype88.

Cohain and colleagues, examined the reproducibility of Bayesian networks us-

ing both STARNET and whole blood data from GTEx. The researchers found that

individual network edges are challenging to replicate and are highly dependent on

sample size, however that the key drivers (regulators) of these networks are robust

across different datasets and sample sizes230. Therefore, it can be taken that al-

though there may be variability in the network targets, the regulators of these net-

works are conserved across datasets.

These examples highlight a diversity of different approaches that can be used

to replicate gene networks. Replication of gene networks is challenging, as the net-

works themselves describe subtle changes in gene expression over multiple genes,

which respond in a coordinated way to an associated exposure. Therefore, although

it is unlikely that all network targets will be replicated, the broad changes in gene
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expression should be consistent between datasets and able to be captured.

4.1.3 Chapter objectives

1. To provide evidence of the presence of cortisol associated trans-genes identi-

fied from STARNET in an independent dataset.

2. To provide evidence of glucocorticoid regulated gene networks identified from

STARNET in an independent dataset.
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4.2 Materials and methods

4.2.1 Datasets

Three major datasets were used over the course of this chapter as described in Ta-

ble 4.1. Gene expression data for METSIM is available publicly at GEO (assession

no GSE70353) and METSIM genotype data was accessed through an application to

dbGaP (assession no. phs000743.v1.p1).

Dataset Full name Number of participants Study type Number of SNPs

STAGE Stockholm Atheroscle-
rosis Gene Expression
study

114 Genotype and
Microarray data

909,622

METSIM Metabolic Syndrome
in Man study

982 Whole exome
sequencing and
RNA-seq

444,342

BIOCORT Chantzichristos et al,
2021

10 Randomised
crossover trail

N/A

Table 4.1: Dataset used for replication of cortisol associated trans-genes and networks

4.2.2 trans-gene replication

Processing of METSIM genotypes

METSIM genotypes were obtained through an application to dbGaP. Genotypes were

obtained using an Exome Chip assay (Illumina). VCF files were processed using

vcftools (version 0.1.13) to convert genotypes to -012 format, as a flat text file. Geno-

type files were then filtered to align with individuals where gene expression data

is also available. A further filtering step was used to identify SNPs that were also

present in the CORNET GWAMA.
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Processing of METSIM gene expression data

Subcutaneous fat biopsies underwent RNA isolation and gene expression levels were

measured as described in Civelek et al, 2017231. To summarise; expression profil-

ing was performed using the Affymetrix U219 microarray. Microarray processing

was carried out using Affymetrix GCOS algorithm via the robust multiarray average

(RMA) method. PCA was conducted on downloaded subcutaneous fat gene expres-

sion, across sample (Figure S4.10). Ensembl Biomart (GRCh37) was used to label

transcripts (provided as Ensembl IDs) with; gene name, chromosome location, gene

start and gene end.

Processing of STAGE gene expression data

Gene expression analysis was carried out as described in Foroughi et al, 2015160,

using a custom Affymetrix array (HuRSTA-2a520709). Normalisation was carried

out using the RMA method and a custom annotation file was used to match probes

to 19,610 probe sets for unique genes using the hg19 human genome assembly. PCA

was conducted on all STAGE tissues, across sample (Figure S4.9). Ensembl Biomart

(GRCh37) was used to label transcripts (provided as Ensembl IDs) with; gene name,

chromosome location, gene start and gene end.

Differential gene expression in BIOCORT

Raw Affymetrix microarray files (HuGene-2_0-st) were obtained from BIOCORT au-

thors229. Cel files were pre-processed using the oligo package232 in R and expression

was normalised using the gcrma method. Following this, differential expression for

treated vs untreated samples was obtained using limma233 with the application of

empirical Bayes smoothing to the standard errors. All steps were carried out in R.
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Trans-gene discovery

Association between SNPs and trans-genes were obtained using the secondary link-

age test in Findr92 (P2). This was carried out as described in Chapter 2.2.3, by test-

ing all SNPs within the prescribed window against all genes in the corresponding

dataset.

4.2.3 Gene network replication

Correlations between network targets

Correlations between between gene network targets were calculated using gene ex-

pression data from STARNET, STAGE and METSIM. Gene expression matrices were

filtered to only include the target genes under investigation and the .corr function

in Pandas was used to construct correlation matrices of corresponding Pearson cor-

relation coefficients as an absolute value.

A background gene-set was constructed from the overlapping genes between

the STARNET gene expression set that was used for network discovery and the cor-

responding gene expression set that was being used for replication. The previously

described correlation analysis, was then repeated using a random set of genes (the

same size as the target set) selected from the background gene-set using the .sam-

ple function in Pandas. The Kruskal Wallis test was used in Scipy Stats to test if the

targeted and randomly sampled correlations follow the same distribution. Both the

targeted and random correlations were then plotted as both a distribution plot and

a box plot using the Python plotting package Seaborn.

Regulator-target network correlations

Correlations were also calculated between predicted network regulators and the

corresponding targets. Instead of constructing a matrix, this was performed iter-
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atively to obtain the Pearson correlation coefficients between regulators and target

expression profiles as absolute values.

Random gene sets the same size of the target gene set were constructed from

a background set, and correlation coefficients were obtained between the network

regulator and random sets, using the same iterative method. The Kruskal Wallis test,

from Scipy Stats, was calculated using the random and target sets for each regulator

and this was again presented as distribution plots and box plots.
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4.3 Results

4.3.1 Replication of cortisol associated trans-genes

Cortisol associated SNPs not present within METSIM genotypes

Our initial approach to address the replication of STARNET trans-genes described

in Chapter 2.3.3, was to repeat the trans-eQTL discovery with SNPs associated with

plasma cortisol from the CORNET GWAMA (p < 5×10-8), using METSIM genotypes

and gene expression data. Following genotype processing, METSIM SNPs were fil-

tered to include those present at the CORNET peak on Chromosome 14 (± 100 Kb of

SERPINA6). We then selected samples from individuals where where both genotype

and expression data was present (n = 189).

METSIM genotypes were limited to exonic regions, therefore there were only 17

SNPs identified in the locus identified from the CORNET GWAMA which was mainly

intronic. Of these SNPs, the SNP with the strongest association with plasma cortisol

was rs2273399 (p = 2.1×10-5). No SNPs were identified that surpassed the threshold

of genome wide significance. For this reason, no SNPs were taken forward for trans-

eQTL analysis with METSIM gene expression data.

Cortisol associated genes in STAGE tissues

As STAGE contains many of the same tissues measured in STARNET, this presented

as an alternate avenue to replicate cortisol linked trans-associations identified in

STARNET. Trans-eQTL discovery was carried out in five STAGE tissues that were also

present in STARNET, namely; liver, skeletal muscle, subcutaneous fat, visceral ab-

dominal fat and whole blood. Following genotype processing, SNPs in STAGE were

filtered for those present at the CORNET peak on chromosome 14 (± 100 Kb of SER-

PINA6), and both genotype and gene expression data was filtered to only include

individuals where there was both genotype and gene expression data available (Ta-
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ble 2.1).

72 SNPs were identified within a 100 Kb window surrounding SERPINA6, 8 of

which were present in the CORNET GWAMA at genome wide significance (p≤ 5×10-8).

Trans-eQTL analysis was carried out between all genes from the five STAGE tissue

and all 72 SNPs at the SERPINA6 loci, after which we selected for SNP-gene asso-

ciations between genes and SNPs associated with plasma cortisol at genome wide

significance at a 15% FDR threshold. A total of 44 SNP-gene associations between

cortisol linked SNPs and genes in STAGE tissues were identified, with 21 unique

genes across all tissues. Of these 21 genes; 20 were associated with cortisol SNPs

in trans (Table 4.2). One gene, SERPINA9, was cis-associated with rs7161521 (p =

3.07×10-19) in blood (Findr P2 = 0.89). Cis-associations between cortisol SNPs and

SERPINA6 in STAGE are described in Chapter 2.3.1.

The strongest trans-associations were identified in liver and subcutaneous fat

for the genes HMSD and UBXN2B respectively (Findr P2 = 0.97). HMSD is associated

with rs11629171 (CORNET p = 6.83×10-14) but was not measured in STARNET liver

so could not be compared. UBXN2B was associated with 4 cortisol linked SNPs, the

strongest of which was rs1884548 (CORNET p = 4.54×10-10). This association was

not retained in STARNET-subcutaneous fat (Findr P2 = 0).

The only gene to appear as cortisol linked trans-gene in both STARNET and in

STAGE (FDR = 15%) was OGG1, which was expressed in skeletal muscle. OGG1 is

associated in STAGE with rs1884549 (CORNET p = 4.94×10-10) and STARNET with

rs2749539 (CORNET p = 3.04×10-8), interestingly the two SNPs are in different LD

block, as described in Chapter 2.3.2.

Cortisol associated trans-genes are differentially expressed in response to hydro-

cortisone treatment

The results from experiments by the BIOCORT consortium reveals genes which are

differentially expressed in Addison’s disease patients (n = 10) in response to hydro-
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Tissue Gene name SNP P2 Findr score Number of associations

Blood

OR5B2 rs1884549 0.83 3

C8orf22 rs1884549 0.91 5

Liver

HADH rs4905188 0.86 2

PSG2 rs11629171 0.92 1

HMSD rs11629171 0.97 1

C21orf15 rs941599 0.76 2

Subcutaneous fat

OR4D10 rs11629171 0.91 1

UBQLN3 rs11629171 0.90 1

SLC37A3 rs11629171 0.90 1

OR8K1 rs11629171 0.79 1

UBXN2B rs1884548 0.97 4

ZKSCAN2 rs11629171 0.93 1

Skeletal Muscle

TTC33 rs941599 0.87 2

PPP4R1 rs4905188 0.86 5

FCER2 rs941595 0.96 2

EIF2S1 rs941599 0.83 2

HTR2A rs11629171 0.81 1

DUOX1 rs11629171 0.81 1

OGG1* rs1884549 0.80 3

Visceral abdominal fat MYF6 rs11629171 0.94 3

Table 4.2: Trans-associations between SNPs associated with plasma cortisol (p ≤ 5×10-8) and genes
in STAGE (FDR = 15%). SNP column indicates strongest eQTL and number of associations is specific
to SNPs that are associated with plasma cortisol. *Indicates genes that are also trans-associated
with cortisol linked SNPs in the same tissue in STARNET (FDR = 15%).

cortisone treatment. This has been obtained from gene expression data from sub-

cutaneous fat and PBMCs. We compared the overlap between genes which were

differentially expressed in BIOCORT (p ≤ 0.05) to genes that were associated with

plasma cortisol in subcutaneous fat (FDR = 15%) (Table 4.3).

Five unique genes were differentially expressed in BIOCORT subcutaneous fat,

out of the 54 genes that were trans-associated with genetic variation for plasma cor-

tisol (FDR = 15%). None of these genes were identified as major network regulators,

however STAT4 is shown to have three causal targets at a 15% FDR threshold. Addi-

tionally BRD2 is a target of the PBX2 sub-network at a 15% FDR cut off (Findr score
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Discovery Replication

Gene name SNP P2 Findr score p-value Fold change direction of regulation

DSG2 rs3790035 0.871 0.024 1.235 +

DSG2 rs8015996 0.871 0.024 1.235 +

DSG2 rs11629171 0.871 0.024 1.235 +

PKP2 rs1243171 0.856 0.003 1.398 +

STAT4 rs941594 0.856 0.031 0.805 +

STAT4 rs2749527 0.779 0.031 0.805 +

BRD2 rs1243171 0.850 0.022 1.083 +

BRD2 rs59036614 0.736 0.022 1.083 +

MAMDC2 rs8022616 0.822 0.013 1.450 +

Table 4.3: BIOCORT - CORNET trans-gene crossover in subcutaneous fat. Table contains genes that
are both differentially expressed in BIOCORT (p ≤ 0.05) and trans-associated with SNPs associated
with plasma cortisol (FDR = 15%).

= 0.85). Using Fisher’s exact test there is no evidence of an enrichment of cortisol

associated trans-genes within the genes differentially expressed in BIOCORT sub-

cutaneous fat (p = 0.801). However, these findings do not take into account any

differences in gene expression that may arise as a result of a cortisol free system.

4.3.2 Correlations in gene expression between network targets

Correlations of network targets in METSIM subcutaneous fat

The causal gene networks identified in Chapter 3, represent coordinated changes

in gene expression in response to genetic perturbations. Therefore, it is possible to

examine if these changes in gene expression are present in other datasets, from gene

expression data alone. We used gene expression data from subcutaneous fat from

METSIM to compare patterns in gene expression within causal networks predicted

from STARNET subcutaneous fat. As METSIM only contains gene expression data

for subcutaneous fat, analysis was restricted to the causal networks identified in

STARNET subcutaneous fat.

Correlation matrices were constructed from the targets of the subcutaneous fat

sub-network regulators; IRF2, RNF13 and PBX2 at both 10% and 15% FDR thresh-

olds. This allowed for correlations between these network targets to be calculated
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and for the distribution of these correlations to be examined (Figure 4.1). Absolute

correlation distributions were compared to distributions of a random set of genes

selected from METSIM subcutaneous fat, the same size as the corresponding target

gene set. The difference between targeted and random distributions was formalised

using the Kruskal Wallis test for each sub-network (Table 4.4).

Network regulator FDR threshold KW test statistic p-value No. Target Genes

IRF2 10% FDR 72.35 1.80E-17 128

IRF2 15% FDR 543.29 3.63E-120 247

RNF13 10% FDR 10125.33 < 1.0E-300 215

RNF13 15% FDR 33660.99 < 1.0E-300 416

PBX2 10% FDR 83.87 5.30E-20 138

PBX2 15% FDR 22620.51 < 1.0E-300 883

Table 4.4: Correlations between network targets in METSIM subcutaneous fat. Kruskal Wallis test
calculated for distribution of correlations between network targets compared to correlations within
random gene set of same size.

Target gene correlations show a distribution skewed towards higher correlation

values compared to the random distribution at both 10% and 15% FDR network

thresholds, suggesting that the expression of these genes is more highly correlated

than what would be expected by chance. For each gene-set, the disparity between

target and random sets is strongest at the 15% threshold which was also the same

threshold where GR target enrichment was highest in IRF2 targets (Chapter 3.3.3).

The largest divergence between the targeted and random distribution is from the

RNF13 targets, in particular within the 15% network (p < 1.0×10-300). The differ-

ences between IRF2 and PBX2 targets are more modest, however both show a dis-

tribution skewed towards higher correlation values compared to the random distri-

bution at both 10% and 15% FDR network thresholds.

As the gene networks had originally been identified using causal methods in

STARNET rather than by co-expression, we also examined the co-expression of net-

work targets in STARNET as well as METSIM (Table S4.8, Figure S4.11). Interest-

ingly, the correlations within both targeted and random gene sets appear to be sys-

tematically weaker in STARNET when compared to METSIM. However, the dispar-

ity between random and targets correlations is more pronounced than correlations
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Figure 4.1: Correlations in gene expression between network targets in METSIM subcutaneous fat
as absolute values. (A) Distribution plot of subcutaneous fat sub-network correlations compared to
random gene set of same size (orange). Comparison between targeted and random distribution
formalised by Kruskal Wallis p-value. (B) Boxplots comparing distribution between targets and
random gene set.
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within METSIM for all gene sets at both 10% and 15% FDR threshold (p < 1.0×10-300).

Correlations of network targets in STAGE liver and adipose

Outside of identifying trans-gene associations in STAGE, it is also possible to ex-

amine correlations in gene expression between network targets that have been pre-

dicted from STARNET. Although gene expression in STAGE represents a smaller sam-

ple size than METSIM, it has the benefit of the inclusion of a broader range of tis-

sues, including all 3 STARNET tissues where gene networks were identified (Table

2.1).

We calculated correlations in gene expression from STAGE for network targets

from liver, subcutaneous fat and visceral abdominal fat at both 10% and 15% FDR

thresholds. As with METSIM, we then calculated correlations in gene expression

for random gene-sets of the same size as the network targets, from a tissue spe-

cific background constructed from overlap between STAGE and STARNET genes.

We then calculated the Kruskal Wallis test to formalise the difference between the

random and target distributions (Table 4.5).

Tissue Network regulator FDR threshold KW test statistic p-value No. Target Genes

Subcutaneous fat

IRF2 10% FDR 435.48 1.04E-96 128

IRF2 15% FDR 2094.16 < 1.0E-300 247

RNF13 10% FDR 1397.30 < 1.0E-300 215

RNF13 15% FDR 5946.61 < 1.0E-300 416

PBX2 10% FDR 235.21 4.34E-53 138

PBX2 15% FDR 18524.43 < 1.0E-300 883

Visceral abdominal fat

LUC7L3 10% FDR 8.03 0.0046 11

LUC7L3 15% FDR 9.26 0.0023 15

CD163 10% FDR 2.62 0.1 4

CD163 15% FDR 1272.63 9.99-279 378

Liver
CPEB2 10% FDR 133.06 8.76E-31 44

CPEB2 15% FDR 82.95 8.43E-20 190

Table 4.5: Correlations between network targets in STAGE. Kruskal Wallis test calculated for
distribution of correlations between network targets compared to correlations within random gene
set of same size.

In STAGE subcutaneous fat, correlations in gene expression were stronger be-
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tween target genes for each sub-network compared to random distributions (Figure

4.2). As with METSIM, the disparity between random and target correlations was

stronger at the 15% FDR threshold compared to the 10% cut off for all gene sets (p

< 1.0×10-300). However, differences were still observed at the 10% level for all gene

sets (p ≤ 1.6×10-30).

Two causal gene sub-networks had been previously identified in STARNET-visceral

abdominal fat, regulated by the genes CD163 and LUC7L3. As with previous corre-

lations, the disparity between target and random distributions (Figure 4.3) was ob-

served at the 15% FDR threshold, however in this instance this may be influenced

by the fact that CD163 and LUC7L3 have relatively few targets at the 10% threshold

(4 and 12 respectively). CD163 shows a strong difference between target and ran-

dom distributions at the 15% threshold (p = 2.73×10-273), however this is far weaker

for LUC7L3 (p = 0.0021). This was repeated using STARNET gene expression data,

where all target sets show a skewed distribution in comparison to the random distri-

bution (Figure S4.12). However, as with METSIM there is a large difference between

the targets of CD163 and LUC7L3 at 15% FDR (p < 1.00×10-300; 1.62×10-21 respec-

tively).

A single network was identified in STARNET-liver, under the regulation of CPEB2.

Correlations in STAGE-liver were obtained between CPEB2 networks targets and a

random gene set, at both 10% and 15% network thresholds (Figure 4.4). The differ-

ence between target and random distributions is present at both 10% (p = 3.34×10-11)

and 15% (p = 3.01×10-26) threshold, however this is weaker than has been previously

observed for network regulators of other tissues. Again, this was repeated using

gene expression data from STARNET liver, which showed strong contact between

target and random distributions for both 10% and 15% targets for CPEB2 (Figure

S4.13).
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Figure 4.2: Correlations in gene expression between network targets in STAGE subcutaneous fat as
absolute values. (A) Distribution plot of subcutaneous fat sub-network correlations compared to
correlations within random gene set of same size (orange). Comparison between targeted and
random distribution formalised by Kruskal Wallis p-value. (B) Boxplots comparing distribution
between targets and random gene set.
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Figure 4.3: Correlations in gene expression between network targets in STAGE visceral adipose fat
as absolute values. (A) Distribution plot of visceral adipose fat sub-networks compared to
correlations within random gene set of same size (orange). Comparison between targeted and
random distribution formalised by Kruskal Wallis p-value. (B) Boxplots comparing distribution
between targets and random gene set.

Figure 4.4: Correlations in gene expression between network targets in STAGE liver as absolute
values. (A) Distribution plot of liver sub-network compared to correlations within random gene set
of same size (orange). Comparison between targeted and random distribution formalised by
Kruskal Wallis p-value. (B) Boxplots comparing distribution between targets and random gene set.
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4.3.3 Correlations in gene expression between network regulators

and targets

Regulator-target correlations in METSIM subcutaneous fat

In addition to examining correlations between network targets, we also examined

the variability in correlation distributions between network regulators and their pre-

dicted targets. Correlations were calculated between sub-network regulators and

their predicted targets for both the true predicted targets and a random set of genes

of the same size in METSIM subcutaneous fat (Figure 4.5). Again the Kruskal Wallis

test was used to formalise the difference between the target correlation distribution

and that of the random selection (Table 4.6).

Network regulator FDR threshold KW test statistic p-value No. Target genes

IRF2 10% FDR 0.82 0.36 128

IRF2 15% FDR 4.30 0.038 247

RNF13 10% FDR 48.68 3.01E-12 215

RNF13 15% FDR 68.78 1.10E-16 416

PBX2 10% FDR 0.31 0.58 138

PBX2 15% FDR 7.75 0.0054 883

Table 4.6: Correlations between network regulators and targets in METSIM subcutaneous fat.
Kruskal Wallis test calculated for distribution of correlations between network regulators and
targets compared to correlations within random gene set of same size.

For all sub-networks, regulator-target correlations were skewed towards higher

correlations, however the same was also true for the regulator-random correlations

meaning that for most sub-networks there was little difference between the two dis-

tributions. The greatest difference could be seen between the random and target

distributions of RNF13 at both the 10% (p = 3.011×10-12) and 15% (p = 1.01×10-16)

FDR thresholds. As had been seen with the correlations between targets, for all sub-

networks the difference in distributions was strongest at the 15% threshold includ-

ing for IRF2 (p = 0.038) and PBX2 (p = 0.0054).

Again, this approach was repeated using STARNET expression data (Table S4.9,

Figure S4.14). Correlations again appeared lower in STARNET compared to MET-
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Figure 4.5: Correlations in gene expression between network regulators and predicted targets in
METSIM subcutaneous fat as absolute values. (A) Distribution plot of subcutaneous fat
regulator-target compared to correlations between regulator and random gene set of same size
(orange). Comparison between targeted and random distribution formalised by Kruskal Wallis
p-value. (B) Boxplots comparing distribution between regulator-targets and regulator-random gene
set.
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SIM, however there was greater distinction between the target vs random correla-

tions when compared to the expression of the regulator compared to the distribu-

tion of correlations between target genes. All networks showed a distinction be-

tween the distribution of regulator-target correlations compared to correlations be-

tween the regulator and random genes.

Regulator-target correlations in STAGE liver and adipose

As with the correlations between network targets, STAGE was used to independently

examine patterns in gene expression between network regulators and their corre-

sponding targets in liver, subcutaneous fat and visceral abdominal fat. Regulator-

target correlations were calculated for each sub-network and compared to a regulator-

random distribution, selected from a tissue specific background. Again, this was

formalised using the Kruskal Wallis test (Table 4.7).

Tissue Network regulator FDR threshold KW test statistic p-value No. Target Genes

Subcutaneous fat

IRF2 10% FDR 3.25 0.07 128

IRF2 15% FDR 1.28 0.26 247

RNF13 10% FDR 1.65 0.20 215

RNF13 15% FDR 4.63 0.031 416

PBX2 10% FDR 4.95 0.026 138

PBX2 15% FDR 23.26 1.41E-06 883

Visceral abdominal fat

LUC7L3 10% FDR 3.13 0.077 11

LUC7L3 15% FDR 3.22 0.073 15

CD163 10% FDR 3.03 0.082 4

CD163 15% FDR 0.05 0.83 378

Liver
CPEB2 10% FDR 0.02 0.88 44

CPEB2 15% FDR 0.09 0.77 190

Table 4.7: Correlations between network regulators and targets in STAGE. Kruskal Wallis test
calculated for distribution of correlations between network regulators and targets compared to
correlations within random gene set of same size.

In STAGE-subcutaneous fat, there was minimal difference between the regulator-

random and regulator-target correlations across all all sub-networks. The strongest

difference was observed in PBX2 at the 15% threshold (p = 1.41×10-6). For both

IRF2 and PBX2, the differences between random and targeted correlations at both
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10% and 15% cut offs are minimal, however interestingly for IRF2 they are stronger

at the 10% FDR threshold compared to 15% (p = 0.07).

In STAGE-visceral abdominal fat, there was minimal difference between regulator-

target and regulator-random distributions for either LUC7L3 or CD163. There was

some variability in distributions at the 10% thresholds, however this is likely due

to the relatively low number of genes at these thresholds. In STARNET-visceral ab-

dominal fat, the difference is more stark between random and targets, although the

overall correlation values are low (Figure S4.15).

There was no difference observed between regulator-target and regulator-random

distributions in STAGE-liver. For CPEB2, there was no distinction between the target

and random correlation distributions at either the 10% or 15% FDR thresholds. In

STARNET-liver, although correlation values remained low, the distinction between

targeted and random correlations was strong at both the 10% (p = 1.83×10-13) and

15% (p = 1.68×10-45) thresholds (Figure S4.15).
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Figure 4.6: Correlations in gene expression between network regulators and predicted targets in
STAGE subcutaneous fat as absolute values. (A) Distribution plot of subcutaneous fat
regulator-target compared to correlations between regulator and random gene set of same size
(orange). Comparison between targeted and random distribution formalised by Kruskal Wallis
p-value. (B) Boxplots comparing distribution between regulator-targets and regulator-random gene
set.
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Figure 4.7: Correlations in gene expression between network regulators and predicted targets in
STAGE visceral adipose fat as absolute values. (A) Distribution plot of visceral adipose fat
regulator-target compared to correlations between regulator and random gene set of same size
(orange). Comparison between targeted and random distribution formalised by Kruskal Wallis
p-value. (B) Boxplots comparing distribution between regulator-targets and regulator-random gene
set.

Figure 4.8: Correlations in gene expression between network regulators and predicted targets in
STAGE liver as absolute values. (A) Distribution plot of liver regulator-target compared to
correlations between regulator and random gene set of same size (orange). Comparison between
targeted and random distribution formalised by Kruskal Wallis p-value. (B) Boxplots comparing
distribution between regulator-targets and regulator-random gene set.
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4.4 Discussion

4.4.1 Independent trans-associations within SERPINA6/ SERPINA1

locus

Trans-eQTL associations identified from a single dataset often prove challenging

to reproduce in independent data sources, a problem which is compounded by

marginal effect sizes. There is also the added difficulty of sourcing comparable in-

dependent datasets that fulfil the criteria necessary for studying the impact of ge-

netic variation on gene expression. This can often lead to trans-associations being

missed, resulting in an increased false negative rate.

Although STAGE follows a similar study design to STARNET, it is a unique co-

hort and is independent from STARNET. As well as being independent, STAGE is

composed of individuals with comparable (European) ancestry, and contains gene

expression data for many of the same tissues found in STARNET. These factors were

taken in account when selecting STAGE as a source of replication for the cortisol as-

sociated trans-genes identified in STARNET. A significant drawback however is the

difference in sample sizes between STAGE (n = 114) and STARNET (n = 600), which

makes it more challenging to detect some of the small effect size associations iden-

tified in STARNET.

Although, cortisol associated trans-genes were identified across all 5 STAGE tis-

sues examined, there was minimal overlap with the trans-associations previously

identified using STARNET. One trans-gene, OGG1, was identified in both STARNET

and STAGE for skeletal muscle. OGG1 encodes the enzyme 8-Oxoguanine glycosy-

lase which is involved in DNA repair234. Murine models have also demonstrated that

OGG1 deficiency, result in increased lipid deposition in skeletal muscle235. However,

OGG1 is associated with a different SNP in STAGE compared to STARNET, although

both SNPs are associated with plasma cortisol.

METSIM is a large cohort (n = 982), with genotype and subcutaneous fat gene
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expression data. METSIM was used to identify cortisol associated trans-genes that

could be compared to those identified in STARNET-subcutaneous fat. However, the

number of individuals available for eQTL discovery was dramatically reduced when

selecting for individuals where where both subcutaneous fat gene expression and

genotype data was available (n = 189). Moreover, as METSIM genotypes had been

obtained using an exome chip array, this excluded the majority of intronic SNPs that

were associated with plasma cortisol at the SERPINA6/ SERPINA1 locus. No plasma

cortisol associated SNPs were identified, meaning that we were unable to to identify

any cortisol associated trans-genes. Although this resource is currently lacking the

capability to measure these cortisol associated genotypes, this could potentially be

overcome through the application of imputation methods236 however issues relat-

ing to sample size will still remain.

In addition to using genotype data to link cortisol associated genetic variants to

gene expression, we used data obtained from perturbation experiments to identify

trans-genes, whose expression varies in response to treatment with cortisol. Indi-

viduals with primary adrenal insufficiency, or Addison’s disease, are lacking in their

production of adrenocortical hormones, including cortisol237. These individuals

represent a unique opportunity to measure changes in gene expression in response

to cortisol, in what constitutes a human glucocorticoid "knock-out". The BIOCORT

authors identified subcutaneous fat genes in Addison’s disease patients that were

differentially expressed in response to treatment with hydrocortisone229. This pre-

sented an opportunity to identify genes associated with genetic variation for cor-

tisol, that have also been demonstrated to respond to hydrocortisone treatment in

individuals with low basal levels of glucocorticoids.

Five unique genes were identified that were both associated with genetic vari-

ation for plasma cortisol in STARNET and differentially expressed in response to

hydrocortisone treatment in the BIOCORT, within the same tissue. Although none

of these genes were key network regulators, it is notable that there was one gene,

BRD2, which was both a cortisol associated trans-gene and a target of the PBX2 sub-

network in subcutaneous fat. Additionally another trans-gene, STAT4 was shown to
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be associated with plasma cortisol, differentially expressed in response to hydrocor-

tisone treatment and regulated a small sub-network of 3 target genes. These find-

ings represent sustained changes in gene expression, across independent datasets,

identified using different methodological approaches.

A limitation of identifying cortisol associated trans-genes with BIOCORT, is that

gene expression was not measured in many of the tissues where trans-genes had

been identified in STARNET. As a result, this approach could only be applied to

trans-genes identified in subcutaneous fat and not any of the other STARNET tis-

sues. Another consideration is that gene expression has been shown to be highly

variable when sampling from different subcutaneous adipose depots238. Although

the subcutaneous fat measured in both STARNET and BIOCORT has both been sam-

pled from the abdominal region, depot specific variation may occur. These regional

differences contribute added difficulty in comparing patterns in gene expression

across datasets, where not all variation can be attributed to the studied perturba-

tion, be it genetic or experimental.

An additional limitation of using patients with Addison’s disease, is that in a cor-

tisol free system there are systemic changes that may alter gene expression which

are not reflective of response to hydrocortisone treatment. Therefore, it is unclear

if differentially expressed genes in Addison’s patients can be used as a direct proxy

for cortisol responsive genes. There is evidence suggesting that gene expression lev-

els of cortisol responsive gene respond to exogenous glucocorticoid treatment239,

however it is unclear if this is the case in a cortisol free system.

4.4.2 Network targets are highly correlated in independent cohorts

Gene networks were reconstructed in STARNET using causal methods, through the

use of eQTLs as genetic instruments to infer pairwise gene-gene relationships. We

aimed to investigate if these coordinated changes in gene expression are present in

other datasets outside of STARNET. It is possible to compare correlations in gene

expression within predicted networks to random sets of genes under the hypothesis
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that correlations within true gene networks would be expected to be stronger than a

random set. We examined gene network correlations using two approaches; calcu-

lating correlation distributions between network targets and calculating correlation

distributions between network targets and associated regulator.

The gene networks identified in subcutaneous fat were the primary targets of

replication for several reasons; they represented the most sub-network regulators,

with the most targets at the strictest threshold (10% FDR) and there were multiple

datasets available for replication (METSIM and STAGE). For all subcutaneous fat

sub-networks, a shift was observed between the targeted and random distributions

within the network targets, with the RNF13 network appearing most strongly corre-

lated. This was particularly prevalent at the 15% FDR threshold leading to a stronger

Kruskal Wallis test statistic, although the bulk of this difference may be driven by the

larger numbers of genes in the 15% FDR sub-networks.

When examining correlations between regulators and targets, the distinction

between targeted and random distributions becomes less clear even when corre-

lation distributions are heavily shifted towards being positively correlated. How-

ever, as with the correlations between targets, the shift between regulator-target

and regulator-random distributions is strongest at the 15% threshold. Again, the

strongest shift can be observed for the RNF13 sub-network targets, particularly in

the METSIM dataset. One reason that the IRF2 and PBX2 sub-network shifts are not

as prominent as those observed in RNF13 could be explained by the fact that both

IRF2 and PBX2 are transcription factor, and therefore likely to regulate a number of

genes outside of these putative cortisol regulated networks, leading to an inflation

in the correlations of the random distributions.

Replication of gene networks in visceral abdominal adipose and liver, was lim-

ited by the fact that correlations could only be examined in the STAGE dataset.

There was only one sub-network identified in STARNET-liver, which was under the

regulation of CPEB2. As with subcutaneous fat, there is a greater disparity observed

between random and targeted correlations at the 15% threshold. The same is true
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for the sub-networks of visceral abdominal fat, particularly for CD163 where there is

a dramatic increase in the number of targets from 4 to 378. There is a more modest

increase for LUC7L3 from 10% to 15%, however this corresponds to a small increase

from 11 to 15 targets. As with subcutaneous fat, there is little to no difference be-

tween the regulator-target and the regulator-random correlations.

It is worth noting that there are observable differences in the range of correla-

tion values between different datasets, giving the impression that network correla-

tion values are higher in METSIM than they are in STARNET. This is likely to be due

to numerical differences in the pre-processing of gene expression data from these

respective datasets where METSIM is presented as the transcripts per million (TMP)

and STARNET has undergone log2 transformation. For this reason, it is important

to consider the divergence between random and targeted correlations within the

respective datasets as opposed to directly comparing correlation values.
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4.5 Conclusion

We have identified genes trans-associated with genetic variation for plasma cortisol,

a subset of which show evidence of regulation by GR and in turn act as regulators

for glucocorticoid responsive transcriptional networks. This work has been charac-

terised within a single dataset, STARNET, therefore it is critical to provide evidence

of reproducibility in independent data sources. We have demonstrated that asso-

ciations with genetic variation for cortisol are present within the STAGE dataset,

although there is limited overlap with trans-genes identified in STARNET, an issue

likely to be exacerbated by small sample sizes in STAGE. However, we describe pat-

terns of gene expression that correspond to predicted cortisol network targets in

both METSIM and STAGE datasets, with higher correlations between network tar-

gets over what would be expected by chance. These data highlight the impact that

genetic variation for plasma cortisol has upon robust and reproducible tissue spe-

cific transcriptional variation, providing insight into the wider impact of glucocor-

ticoid biology, as mediated by GR.
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4.6 Supplementary data

Figure 4.9: Principal component analysis of gene expression samples across all STAGE tissues.
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Figure 4.10: Principal component analysis of gene expression samples in MESTIM subcutaneous
fat.

Tissue Network regulator FDR threshold KW test statistic p-value No. Target Genes

Subcutaneous fat

IRF2 10% FDR 5217.64 1.00E-300 128

IRF2 15% FDR 14452.98 1.00E-300 247

RNF13 10% FDR 15327.41 1.00E-300 125

RNF13 15% FDR 26976.73 1.00E-300 416

PBX2 10% FDR 3974.48 1.00E-300 138

PBX2 15% FDR 60503.15 1.00E-300 883

Visceral abdominal fat

LUC7L3 10% FDR 86.96 1.11E-20 11

LUC7L3 15% FDR 85.45 2.38E-20 15

CD163 10% FDR 5.36 0.021 4

CD163 15% FDR 13135.27 1.00E-300 378

Liver
CPEB2 10% FDR 1047.46 8.67E-230 44

CPEB2 15% FDR 6088.62 1.00E-300 190

Table 4.8: Correlations between network targets in STARNET. Kruskal Wallis test calculated for
distribution of correlations between network targets compared to correlations within random gene
set of same size.
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Figure 4.11: Correlations in gene expression between network targets in STARNET subcutaneous
fat as absolute values. (A) Distribution plot of subcutaneous fat sub-network correlations compared
to random gene set of same size (orange). Comparison between targeted and random distribution
formalised by Kruskal Wallis p-value. (B) Boxplots comparing distribution between targets and
random gene set.
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Figure 4.12: Correlations in gene expression between network targets in STARNET visceral adipose
fat as absolute values. (A) Distribution plot of visceral adipose fat sub-network correlations
compared to random gene set of same size (orange). Comparison between targeted and random
distribution formalised by Kruskal Wallis p-value. (B) Boxplots comparing distribution between
targets and random gene set.

Figure 4.13: Correlations in gene expression between network targets in STARNET liver as absolute
values. (A) Distribution plot of liver sub-network correlations compared to correlations between
random gene set of same size (orange). Comparison between targeted and random distribution
formalised by Kruskal Wallis p-value. (B) Boxplots comparing distribution between targets and
random gene set.
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Tissue Network regulator FDR threshold KW test statistic p-value No. Target Genes

Subcutaneous fat

IRF2 10% FDR 116.39 3.91E-27 128

IRF2 15% FDR 220.40 7.38E-50 247

RNF13 10% FDR 202.88 4.91E-46 215

RNF13 15% FDR 280.28 6.53E-63 416

PBX2 10% FDR 174.76 6.75E-40 138

PBX2 15% FDR 804.20 6.58E-177 883

Visceral abdominal fat

CD163 10% FDR 2.08 0.15 11

CD163 15% FDR 309.55 2.74E-69 15

LUC7L3 10% FDR 11.88 0.00057 4

LUC7L3 15% FDR 12.87 0.00033 378

Liver
CPEB2 10% FDR 49.38 2.11E-12 44

CPEB2 15% FDR 200.12 1.97E-45 198

Table 4.9: Correlations between network regulators and targets in STARNET. Kruskal Wallis test
calculated for distribution of correlations between network regulators and targets compared to
correlations within random gene set of same size.
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Figure 4.14: Correlations in gene expression between network regulators and predicted targets in
STARNET subcutaneous fat as absolute values. (A) Distribution plot of subcutaneous fat
regulator-target compared to correlations between regulator and random gene set of same size
(orange). Comparison between targeted and random distribution formalised by Kruskal Wallis
p-value. (B) Boxplots comparing distribution between regulator-targets and regulator-random gene
set.
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Figure 4.15: Correlations in gene expression between network regulators and predicted targets in
STARNET visceral adipose fat as absolute values. (A) Distribution plot of visceral adipose fat
regulator-target compared to correlations between regulator and random gene set of same size
(orange). Comparison between targeted and random distribution formalised by Kruskal Wallis
p-value. (B) Boxplots comparing distribution between regulator-targets and regulator-random gene
set.

Figure 4.16: Correlations in gene expression between network regulators and predicted targets in
STARNET liver as absolute values. (A) Distribution plot of liver regulator-target compared to
correlations between regulator and random gene set of same size (orange). Comparison between
targeted and random distribution formalised by Kruskal Wallis p-value. (B) Boxplots comparing
distribution between regulator-targets and regulator-random gene set.
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Chapter 5

Conclusions and future work

This thesis has aimed to characterise the impact that genetic variation for plasma

cortisol has upon changes in gene expression throughout the transcriptome. This

work has led to the identification of cortisol linked genetic variants, which mediate

changes in gene expression in both cis and trans. We have scrutinised these trans-

associations, to identify a subset of genes that are regulated by glucocorticoids, and

in turn regulate downstream transcriptional networks, thus providing a deeper un-

derstanding of the transcriptional landscape driven by cortisol linked genetic varia-

tion.

5.1 Cortisol associated genetic variation is driven by changes

in SERPINA6 expression in liver

The sole SNP peak identified by the CORNET consortium as associated with plasma

cortisol, was mapped to the SERPINA6/ SERPINA1 locus, containing genes with known

cortisol involvement. For this reasons we chose to start our investigation by exam-

ining cis-associations within this locus. Both SERPINA6 and SERPINA1 play a role

in glucocorticoid regulation through the protein CBG, where the former is the gene

responsible for encoding CBG151 and the latter is involved in CBG cleavage148. We
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identified a peak of cis-eQTLs for SERPINA6 in liver, the tissue in which SERPINA6 is

most highly expressed145. A subset of these cis-eQTLs was demonstrated to overlap

and colocalise with cortisol associated SNPs, suggesting the presence of common

SNPs responsible for both signals.

These findings are suggestive of a functional role for cortisol associated varia-

tion, as mediated by CBG. We were careful to examine other cis-associations within

this region, including SERPINA1, where we were able to identify a cis-eQTL peak in

blood. However, this peak did not include any cortisol associated SNPs, and was

therefore unlikely to be contributing to the cortisol associated variation identified

from the CORNET GWAMA. We were able to further refine the cortisol associated

peak within the GWAMA, as SERPINA6 cis-eQTLs only represented two out of the

four LD blocks (LD blocks 2 and 4) that were shown to be associated with plasma

cortisol at a level of genome wide significance, suggesting that only these blocks are

responsible for mediating cortisol associated variation through CBG.

The lead cis-eQTL for SERPINA6, rs2736898, was also identified as the represen-

tative SNP for the second cortisol associated LD block following LD clumping. The

alternate allele for this SNP exerts a negative effect on SERPINA6, however the lead

SNP for the fourth LD block, rs9989237, increases SERPINA6 expression. This is

notable, as it suggests that although both blocks are associated with cortisol at the

same locus, they have different functional implications. Further research would be

required to uncover the impact of cross-talk within individuals with mutations for

SNPs from more than one LD block, to determine if these alleles work synergistically

or antagonistically, depending on the haplotype structure of the relative effect and

reference alleles.

It is possible that a reduction in CBG expression would correspond to decreased

levels of bound cortisol, which could lead to more free cortisol able to diffuse into

tissues to bind to GR240. However, it is important to consider that a rise in free cor-

tisol as a result of a decrease in CBG, would also be expected to be adjusted by neg-

ative feedback of the HPA axis110. This is a key finding, as we do in fact observe
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downstream transcriptomic consequences in extra-hepatic tissues that appear to

be mediated by CBG, which might be suggestive of a role for CBG beyond binding

cortisol in the blood. Conversely, if CBG expression was increased this would lead

to more bound cortisol and potentially a decrease in the gene expression of cortisol

associated trans-genes.

It is important to note that while variation at the SERPINA6/ SERPINA1 locus has

an important impact on SERPINA6 expression in liver, this impact is observed in

other tissues as well. This impact is particularly prominent for rs2736898, which

in addition to an association with plasma cortisol and with SERPINA6 expression

in liver, also mediates global transcriptional changes in liver and adipose. This

suggests that variation affecting CBG, also mediates changes in gene expression

in extra-hepatic tissues. Such a finding would be consistent with animal models,

where CBG knock out mice show increased levels of free corticosterone157 and how

familial mutation in CBG have been linked to disease154,155.

A missing feature from the description of cortisol associated cis-eQTLs for SER-

PINA6, is the functional role that this has upon the CBG protein, beyond changes in

SERPINA6 gene expression. Although SERPINA6 is translated to CBG, the levels at

the transcriptome are not directly reflected at the proteome241. Additionally, there

are further modifications that can influence CBG protein level, including but not

limited to cleavage of the reactive centre loop by α-1 antitrypsin, which significantly

reduces the binding affinity of CBG148,149. This could be overcome by conducting

a cis-pQTL analysis in the same region to identify genotypes associated with CBG

protein levels. It would then be possible to identify cis-eQTLs for SERPINA6, which

correspond to pQTLs for CBG to establish a through line from genetic changes to

CBG expression, as mediated by modulation of SERPINA6 gene expression.

CBG has been identified as the predominant mechanism for mediating genetic

variation for cortisol, however this is only true in respect to the genetic variation

identified from the CORNET GWAMA specifically. The issue of missing heritability

is common among GWAS, and has still to be addressed by the field as a whole46.
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Estimates for the heritability of cortisol range between 40-60%141, however the lead

SNP identified from the CORNET GWAMA contributes only 0.13% of plasma cortisol

variance8. Despite increasing the sample size from 12,597 in the original GWAMA5

to 25,314 individuals no new loci outside of the SERPINA6/ SERPINA1 locus were

identified. It is likely that additional variation for cortisol exists outside of this locus,

however this is mediated at a level of sub genome wide significance in the CORNET

GWAMA. Therefore it is important to point out that although these findings suggests

CBG is an important mediator of genetic variation for plasma cortisol, it is unlikely

to be the only mechanism.

5.2 Genes trans-associated with plasma cortisol are reg-

ulated by GR in different tissues

In addition to identifying cis-associations at the SERPINA6 locus, we describe how

genetic variation for plasma cortisol is trans-associated with genes in multiple tis-

sues within the STARNET dataset. We identified genes that were trans-associated

with cortisol linked genetic variation across all STARNET tissues. The tissues with

the highest number of unique trans-genes were liver, subcutaneous fat and visceral

abdominal fat. By identifying genes that are trans-associated with cortisol, this

helps to better describe the transcriptional landscape influenced by genetic vari-

ation at the SERPINA6/ SERPINA1.

Having identified a strong signal associated with SERPINA6 expression in liver,

this suggests a potential avenue for modulation of trans-associated genes. As CBG

directly influences levels of free cortisol in the blood, where 80-90%147 of cortisol is

bound to CBG, changes in CBG concentration would result in altered levels of free

cortisol able to activate GR. We made the decision to look for trans-genes across

all cortisol associated SNPs at genome wide significance, including but not limited

to those which are also associated with SERPINA6 expression in liver. This was to

capture the full extent of variation as mediated by this locus, as opposed to that
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which is mediated by SERPINA6 gene expression. As there are more factors that in-

fluence CBG expression and cortisol binding efficacy outside of SERPINA6 expres-

sion, it made sense to include all cortisol associated SNPs.

Under our hypothesis, we predict that genetic effects of cortisol upon trans-

associated genes will be mediated by glucocorticoids. Therefore, we aimed to iden-

tify a subset of cortisol-associated trans-genes where there is evidence of GR reg-

ulation. By combining evidence of GR regulation from a variety of experimental

evidence, we were able to refine a subset of genes that were both associated with

genetic variation for plasma cortisol and regulated by GR. This was done to identify

true GR targets and justified the use of a modest (15%) FDR threshold, as selecting

for GR responsive genes would reduce the probability of false positive findings.

We identified a subset of GR responsive genes in liver, subcutaneous fat and vis-

ceral adipose fat. However, we failed to observe a statistical enrichment of GR reg-

ulated genes in any of these trans-gene sets. This does not negate the identification

of strong GR targets that are associated with plasma cortisol, but it may imply that

there are some effects of cortisol linked genetic variation that are mediated outside

of GR. It is also worth noting that some of the genes with higher levels of evidence

for GR regulation have gone on to demonstrate regulation of transcription networks

e.g. CPEB2, IRF2, RNF13. Therefore this instills confidence in our strategy of casting

a wider net in selecting genes associated with plasma cortisol with a more lenient

FDR threshold and then refining our trans-genes sets to include genes that are rele-

vant to glucocorticoid biology.

Our genes sets in liver, subcutaneous and visceral abdominal adipose were fil-

tered to select for GR regulated trans-genes. These tissues contained the greatest

number of trans-genes and there is well documented GR involvement in these tis-

sues179,180. However glucocorticoids are also major targets in skeletal muscle where

they modulate protein and glucose metabolism242. A lack of resources for identify-

ing tissue specific GR targets in other tissues, means that potential GR targets may

have been missed in tissues outside of liver and adipose. With the availability of
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skeletal muscle specific GR targets, future work could include an examination of GR

regulated trans-genes in skeletal muscle or other GR tissues where cortisol associ-

ated trans-genes were identified.

It should also be noted that published evidence does not provide direct insight

into the mechanism of GR regulation for GR-regulated trans-genes. GRE activation

occurs in response to the binding of GR dimers125, however ChIP-seq does not make

a distinction between GR dimer or monomer action. GR monomers have been

shown to mediate an effect through interacting with other DNA-bound transcrip-

tion factors126, therefore in the case of transcription factors such as IRF2, it is un-

clear if regulation by glucocorticoids is mediated by a GR dimer binding to a GRE,

or a GR momomer interacting with IRF2. Additionally, for genes identified as differ-

entially expressed in response to dexamethasone, we do not know the mechanism

of this GR regulation. Functional experiments could work to resolve this, however

these are ill-suited to a high throughput approach such as those used in this thesis

to identify potential GR targets. However, this would be amenable for the smaller

subset of network regulators identified in this thesis, as part of a future research

strategy.

5.3 GR regulated trans-genes drive transcriptional net-

works

Although we identified cortisol associated trans-genes across multiple tissues, the

phenotypic impact of this variation may not always be exerted by these trans-genes

directly, but can be mediated through transcriptional targets under the regulation of

GR responsive trans-genes. Having identified genes that were trans-associated with

plasma cortisol and putatively regulated by GR, we used causal inference to identify

regulatory networks driven by key trans-genes. This approach aimed to prioritise

key GR responsive trans-genes that are responsible for regulating these downstream

gene networks.
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We identified causal gene networks in liver, subcutaneous fat and visceral ab-

dominal fat where select GR regulated trans-genes act as regulators of sub-networks

within overarching tissue specific networks. Pairwise causal relationships were es-

tablished between network regulators and downstream targets using cis-eQTLs as

genetic instruments. This approach has the benefit of generating directed relation-

ships, where we have established that the regulator is influencing expression of the

target and not the other way around. Additionally, this accounts for any unobserved

confounding, where an outside factor could be responsible for the co-expression of

the regulator and target, suggesting the presence of an interaction where one does

not exist. However, a drawback of this approach is that we are limited by only be-

ing able to examine GR regulated trans-genes with valid cis-eQTLs. This means that

there could be valid cortisol responsive networks regulated by GR trans-genes which

we were unable to predict due to lack of a corresponding instrument.

The presence of pleiotropy can invalidate one of the fundamental assumptions

of instrumental variable analysis, that the instrument should only be associated

with the outcome through the exposure243. As we were careful to only select cis in-

struments, this issue would only occur if the selected instrument is associated with

an additional gene within the cis region, outside of the exposure. Therefore, we cal-

culated cis-association with the genes surrounding our network regulators to ensure

that pleiotropy was not influencing our causal estimates. All sub-network regulators

were free of any interfering cis associations with the exception of PBX2 in subcuta-

neous fat. Multiple cis-associations for the PBX2 instrument were identified, with

10 being targets of PBX2 which raises the possibility that the transcriptional targets

attributed to PBX2 are being regulated by a genes other than PBX2. This does not

invalidate the targets, but may mean that this network is not being regulated by a

GR target.

All other sub-networks identified were determined to be robustly regulated by

their targets. IRF2 stands out as a network regulator of particular interest. There

is strong evidence of GR regulation, where IRF2 has been identified as a GR target

from published dexamethasone treated adipocyte ChIP-seq experiments185 and as
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a putative GR target within ENCODE. It is robustly associated with its correspond-

ing cis-eQTL instrument and there is an enrichment of IRF2 targets within our pre-

dicted IRF2 regulated causal network. Additionally, we show evidence of regulation

by glucocorticoids within the targets of IRF2, potentially suggesting evidence of a

feed-forward loop motif217. Interestingly the genotype for rs8022616, the cortisol

associated SNP linked to IRF2 expression in subcutaneous fat, is associated with a

decrease in IRF2 expression. Previous evidence suggests that interferon signalling is

inhibited by glucocorticoids which would potentially align with this finding244,245.

It is notable that enrichment of both GR and IRF2 targets appears at the 15%

FDR threshold. This is the same threshold where IRF2 predicted targets are most

strongly correlated, compared to what would be expected by chance, in both MET-

SIM and STAGE datasets, suggesting that this is the optimal threshold for balancing

both false positive and false negative findings. It should be noted that although we

have demonstrated replication in independent datasets, all participants were of Eu-

ropean ancestry, therefore not all findings will be generalisable to other populations

and ethnicities.

The RNF13 network is also of note, as the targets for this sub-network identi-

fied in STARNET subcutaneous fat appear to replicate better than any other sub-

network in both METSIM and STAGE datasets. This is also one of the few network

regulators, where correlations between the regulator and its corresponding targets

appear more strongly than what would be expected by chance. RNF13 encodes a

protein that has been shown to play an important role in the unfolded protein stress

response in the endoplasmic reticulum198. Apart from this, RNF13 has not been well

characterised so it is not immediately obvious by which mechanism RNF13 may be

modulating gene expression in subcutaneous fat. It is however notable that RNF13

is a RING domain family member, as these proteins are known to possess E3 ubiqui-

tin ligase activity, which are known to regulate a wide variety of cellular functions246.

We have worked to effectively characterise the transcriptomic consequences of

genetic variation for plasma cortisol, but for a comprehensive systems levels un-
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derstanding of these networks, expanded integration of additional omics data is re-

quired. Following the same argument for the integration of proteomic data to un-

derstand links between genetic variation and CBG, future work should focus on the

impact of trans-associations downstream of translation. Although gene expression

plays a crucial role in the regulation of biological mechanisms, proteins form the

functional foundation for biological activity, therefore improved characterisation of

this omic level would be beneficial in better understanding how these networks may

influence phenotypic variation.

5.4 Future work

It is important to consider that while we have replicated patterns of gene expression

consistent with cortisol associated gene networks, we have yet to link gene expres-

sion of key network regulators to cortisol associated genetic variation in an inde-

pendent dataset. Outside of the avenues for future work, that have already been

outlined in this chapter, this is a key area that additional research should address.

Additional research is required to confirm the extent to which genes are influ-

enced by cortisol linked genetic variation, including how this may be mediated by

CBG. However, partially due to the uniqueness of STARNET as a dataset, it has been

challenging to identify corresponding replication cohort, with appropriately geno-

types samples and the necessary gene expression data required to conduct a repli-

cation trans-gene analysis.

Initially our replication strategy involved a two-pronged approach, whereby in

addition to pursuing replication via statistical analyses using independent datasets,

perturbation based experiments in a representative cell line could act as a source

of validation. Work towards this approach was initiated, but was suspended during

the COVID-19 pandemic in 2020. However this remains a viable strategy for future

work.

SGBS cells are obtained from stromal vascular fraction from subcutaneous adi-
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pose tissue of male infant with Simpson–Golabi–Behmel Syndrome247. These have

been used to study human adipose biology, including through perturbation with

glucocorticoids to study the role of leptin248 and adipose steroidogenic activity249,

making SGBS a promising model for investigating how predictions of cortisol re-

sponsive genes may influence gene expression within an in vitro environment. SGBS

cells require differentiation from pre-adipocytes to adipocytes (Figure 5.1), at which

point they would be able to perturbed experimentally.

Figure 5.1: Differentiation of SBGS pre-adipocytes to mature adipocytes. 17 day differentiation
process from day 0 (D0) to day 17 (D17). Maturation of adipocytes observable through the
accumulation of lipid droplets. Scalebar depicts 200 µm.

A potential strategy would have been to first measure gene expression of pre-

dicted cortisol associated trans-genes within SGBS cells. Following this, it would be

possible to measure how gene expression of these trans-genes vary in response to

perturbation with a GR agonist such a dexamethasone. To validate potential gene

networks, it would be possible to target subcutaneous fat sub-network regulators

such as IRF2 using an knock-down approach such as siRNA inhibition (Figure 5.2).

Following knock-down of the predicted network regulator it would be possible to

measure the corresponding change in gene expression in the SGBS transcriptome,

in the presence of and absence of a GR agonist. Technologies such as RNA-seq,

could measure changes in gene expression which could be filtered for predicted net-

work targets to see if expression varies in response to knock-down of their predicted

regulator.

Experimental validation in a representative model, could be extremely valuable

in measuring the impact of perturbations within cortisol responsive gene networks.
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Figure 5.2: Analysis plan for perturbation of glucocorticoid responsive trans-genes. SGBS cells to
me used as model for studying the effects of cortisol associated trans-genes and networks identified
in STARNET-subcutaneous fat.

Although experimental models are ill-suited to study the direct effect of complex

genetic variation, putative gene networks downstream of such variation, present

as targets for experimental perturbation, with regulators acting as nexus points for

mediating the effects of genetic variation. This opens the door for a variety of exper-

iments, in addition to those already outlined in this section.
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5.5 Conclusion

In this thesis, we have characterised the transcriptomic consequences of genetic

variation for plasma cortisol. These variants result in changes in basal plasma corti-

sol levels that are modest but sustained at a population level. However, we describe

how these small effect size variants can be linked to profound molecular changes

across different tissues. We highlight CBG as the source these genetic changes that

lead to coordinated variation in gene expression across the transcriptome, as medi-

ated by GR.

We have categorised transcriptional networks using causal methods, which pro-

vide far higher resolution than other non-causal forms of network analysis, and

ultimately provide greater scope for translation benefit. We identify key network

regulators, while taking into account tissue specificity, expanding upon current un-

derstanding of the transcriptional consequences of GR signalling. Additionally, we

highlight future directions for understanding the impact of complex genetic varia-

tion for cortisol on a systems wide level. These networks represent robust and sus-

tained genetic changes at a population level and highlight key points of regulation

with applications for both precision medicine and improved understanding of glu-

cocorticoid biology.
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