1,299 research outputs found

    Correction of non-linearity effects in detectors for electron spectroscopy

    Full text link
    Using photoemission intensities and a detection system employed by many groups in the electron spectroscopy community as an example, we have quantitatively characterized and corrected detector non-linearity effects over the full dynamic range of the system. Non-linearity effects are found to be important whenever measuring relative peak intensities accurately is important, even in the low-countrate regime. This includes, for example, performing quantitative analyses for surface contaminants or sample bulk stoichiometries, where the peak intensities involved can differ by one or two orders of magnitude, and thus could occupy a significant portion of the detector dynamic range. Two successful procedures for correcting non-linearity effects are presented. The first one yields directly the detector efficiency by measuring a flat-background reference intensity as a function of incident x-ray flux, while the second one determines the detector response from a least-squares analysis of broad-scan survey spectra at different incident x-ray fluxes. Although we have used one spectrometer and detection system as an example, these methodologies should be useful for many other cases.Comment: 13 pages, 12 figure

    gbtools: Interactive Visualization of Metagenome Bins in R.

    Get PDF
    Improvements in DNA sequencing technology have increased the amount and quality of sequences that can be obtained from metagenomic samples, making it practical to extract individual microbial genomes from metagenomic assemblies ("binning"). However, while many tools and methods exist for unsupervised binning with various statistical algorithms, there are few options for visualizing the results, even though visualization is vital to exploratory data analysis. We have developed gbtools, a software package that allows users to visualize metagenomic assemblies by plotting coverage (sequencing depth) and GC values of contigs, and also to annotate the plots with taxonomic information. Different sets of annotations, including taxonomic assignments from conserved marker genes or SSU rRNA genes, can be imported simultaneously; users can choose which annotations to plot. Bins can be manually defined from plots, or be imported from third-party binning tools and overlaid onto plots, such that results from different methods can be compared side-by-side. gbtools reports summary statistics of bins including marker gene completeness, and allows the user to add or subtract bins with each other. We illustrate some of the functions available in gbtools with two examples: the metagenome of Olavius algarvensis, a marine oligochaete worm that has up to five bacterial symbionts, and the metagenome of a synthetic mock community comprising 64 bacterial and archaeal strains. We show how instances of poor automated binning, sequencer GC% bias, and variation between samples can be quickly diagnosed by visualization, and demonstrate how the results from different binning tools can be combined and refined to yield manually curated bins with higher completeness. gbtools is open-source and written in R. The software package, documentation, and example data are available freely online at https://github.com/kbseah/genome-bin-tools

    Fermi-surface reconstruction involving two Van Hove singularities across the antiferromagnetic transition in BaFe2As2

    Full text link
    We report an angle-resolved photoemission study of BaFe2As2, a parent compound of iron-based superconductors. Low-energy tunable excitation photons have allowed the first observation of a saddle-point singularity at the Z point, as well as the Gamma point. With antiferromagnetic ordering, both of these two van Hove singularities come down below the Fermi energy, leading to a topological change in the innermost Fermi surface around the kz axis from cylindrical to tear-shaped, as expected from first-principles calculation. These singularities may provide an additional instability for the Fermi surface of the superconductors derived from BaFe2As2.Comment: 14 pages, 4 figures, 1 tabl

    Wnt and EGF Pathways Act Together to Induce \u3ci\u3eC. elegans\u3c/i\u3e Male Hook Development

    Get PDF
    Comparative studies of vulva development between Caenorhabditis elegans and other nematode species have provided some insight into the evolution of patterning networks. However, molecular genetic details are available only in C. elegans and Pristionchus pacificus. To extend our knowledge on the evolution of patterning networks, we studied the C. elegans male hook competence group (HCG), an equivalence group that has similar developmental origins to the vulval precursor cells (VPCs), which generate the vulva in the hermaphrodite. Similar to VPC fate specification, each HCG cell adopts one of three fates (1°, 2°, 3°), and 2° HCG fate specification is mediated by LIN-12/Notch. We show that 2° HCG specification depends on the presence of a cell with the 1° fate. We also provide evidence that Wnt signaling via the Frizzled-like Wnt receptor LIN-17 acts to specify the 1° and 2° HCG fate. A requirement for EGF signaling during 1° fate specification is seen only when LIN-17 activity is compromised. In addition, activation of the EGF pathway decreases dependence on LIN-17 and causes ectopic hook development. Our results suggest that WNT plays a more significant role than EGF signaling in specifying HCG fates, whereas in VPC specification EGF signaling is the major inductive signal. Nonetheless, the overall logic is similar in the VPCs and the HCG: EGF and/or WNT induce a 1° lineage, and LIN-12/NOTCH induces a 2° lineage. Wnt signaling is also required for execution of the 1° and 2° HCG lineages. lin-17 and bar-1/β-catenin are preferentially expressed in the presumptive 1° cell P11.p. The dynamic subcellular localization of BAR-1–GFP in P11.p is concordant with the timing of HCG fate determination

    The low-energy electron point source microscope as a tool for transport measurements of free-standing nanometer scale objects: application to carbon nanotubes

    Full text link
    We have developed a simple and reliable technique for two-terminal transport measurements of free-standing wire-like objects. The method is based on the low-energy electron point source microscope. The field emission tip of the microscope is used as a movable electrode to make a well-defined local electrical contact on a controlled place of a nanometer-size object. This allows transport measurements of the object to be conducted. The technique was applied to carbon nanotube ropes.Comment: 4 pages, 4 figures; submitted to J. Vac. Sci. Tech.

    Unravelling the mechanism of TrkA-induced cell death by macropinocytosis in medulloblastoma Daoy cells

    Get PDF
    Macropinocytosis is a normal cellular process by which cells internalize extracellular fluids and nutrients from their environment and is one strategy that Ras-transformed pancreatic cancer cells use to increase uptake of amino acids to meet the needs of rapid growth. Paradoxically, in non-Ras transformed medulloblastoma brain tumors, we have shown that expression and activation of the receptor tyrosine kinase TrkA overactivates macropinocytosis, resulting in the catastrophic disintegration of the cell membrane and in tumor cell death. The molecular basis of this uncontrolled form of macropinocytosis has not been previously understood. Here, we demonstrate that the overactivation of macropinocytosis is caused by the simultaneous activation of two TrkA-mediated pathways: (i) inhibition of RhoB via phosphorylation at Ser185 by casein kinase 1, which relieves actin stress fibers, and (ii) FRS2-scaffolded Src and H-Ras activation of RhoA, which stimulate actin reorganization and the formation of lamellipodia. Since catastrophic macropinocytosis results in brain tumor cell death, improved understanding of the mechanisms involved will facilitate future efforts to reprogram tumors, even those resistant to apoptosis, to die

    Arf6 controls beta-amyloid production by regulating macropinocytosis of the Amyloid Precursor Protein to lysosomes

    Get PDF
    Alzheimer\u27s disease (AD) is characterized by the deposition of Beta-Amyloid (Aβ) peptides in the brain. Aβ peptides are generated by cleavage of the Amyloid Precursor Protein (APP) by the β - and γ - secretase enzymes. Although this process is tightly linked to the internalization of cell surface APP, the compartments responsible are not well defined. We have found that APP can be rapidly internalized from the cell surface to lysosomes, bypassing early and late endosomes. Here we show by confocal microscopy and electron microscopy that this pathway is mediated by macropinocytosis. APP internalization is enhanced by antibody binding/crosslinking of APP suggesting that APP may function as a receptor. Furthermore, a dominant negative mutant of Arf6 blocks direct transport of APP to lysosomes, but does not affect classical endocytosis to endosomes. Arf6 expression increases through the hippocampus with the development of Alzheimer\u27s disease, being expressed mostly in the CA1 and CA2 regions in normal individuals but spreading through the CA3 and CA4 regions in individuals with pathologically diagnosed AD. Disruption of lysosomal transport of APP reduces both Aβ40 and Aβ42 production by more than 30 %. Our findings suggest that the lysosome is an important site for Aβ production and that altering APP trafficking represents a viable strategy to reduce Aβ production

    Ant Colony Optimization for the Design of Water Distribution Systems

    Get PDF
    During the last decade, evolutionary methods such as genetic algorithms have been developed for the optimal design and operation of water distribution systems. More recently, ant colony optimization algorithms (ACOAs), which are evolutionary methods based on the foraging behavior of ants, been successfully applied to a number of benchmark combinatorial optimization problems. For example, when applied to the traveling salesman problem, ACOAs have been shown to outperform genetic algorithms. In this paper, a formulation is developed which enables ACOAs to be used for the optimal design of water distribution systems. This formulation is applied to a benchmark water distribution system optimization problem and the results are compared with those obtained using genetic algorithms. The findings of this study indicate that the performance of ACOAs is comparable with that of GAs for the case study considered. The GA performed slightly better in terms of finding the optimal solution from different starting positions in the search space, whereas the ACOA perfomed better in terms of the number of evaluations needed to reach the optimum.Holger R. Maier, Angus R. Simpson, W. K. Foong, K. Y. Phang, H. Y. Seah, and C. L. Ta

    Evolution of spectral function in a doped Mott insulator : surface vs. bulk contributions

    Get PDF
    We study the evolution of the spectral function with progressive hole doping in a Mott insulator, La1xCaxVO3La_{1-x}Ca_xVO_3 with xx = 0.0 - 0.5. The spectral features indicate a bulk-to-surface metal-insulator transition in this system. Doping dependent changes in the bulk electronic structure are shown to be incompatible with existing theoretical predictions. An empirical description based on the single parameter, U/WU/W, is shown to describe consistently the spectral evolution.Comment: Revtex, 4 pages, 3 postscript figures. To appear in Phys. Rev. Let

    Performance characteristics of next-generation sequencing for the detection of antimicrobial resistance determinants in Escherichia coli genomes and metagenomes

    Get PDF
    Short-read sequencing can provide detection of multiple genomic determinants of antimicrobial resistance from single bacterial genomes and metagenomic samples. Despite its increasing application in human, animal, and environmental microbiology, including human clinical trials, the performance of short-read Illumina sequencing for antimicrobial resistance gene (ARG) detection, including resistance-conferring single nucleotide polymorphisms (SNPs), has not been systematically characterized. Using paired-end 2 x 150 bp (base pair) Illumina sequencing and an assembly-based method for ARG prediction, we determined sensitivity, positive predictive value (PPV), and sequencing depths required for ARG detection in an Escherichia coli isolate of sequence type (ST) 38 spiked into a synthetic microbial community at varying abundances. Approximately 300,000 reads or 15x genome coverage was sufficient to detect ARGs in E. coli ST38, with comparable sensitivity and PPV to ~100x genome coverage. Using metagenome assembly of mixed microbial communities, ARG detection at E. coli relative abundances of 1% would require assembly of approximately 30 million reads to achieve 15x target coverage. The minimum sequencing depths were validated using public data sets of 948 E. coli genomes and 10 metagenomic rectal swab samples. A read-based approach using k-mer alignment (KMA) for ARG prediction did not substantially improve minimum sequencing depths for ARG detection compared to assembly of the E. coli ST38 genome or the combined metagenomic samples. Analysis of sequencing depths from recent studies assessing ARG content in metagenomic samples demonstrated that sequencing depths had a median estimated detection frequency of 84% (interquartile range: 30%-92%) for a relative abundance of 1%. IMPORTANCE Systematically determining Illumina sequencing performance characteristics for detection of ARGs in metagenomic samples is essential to inform study design and appraisal of human, animal, and environmental metagenomic antimicrobial resistance studies. In this study, we quantified the performance characteristics of ARG detection in E. coli genomes and metagenomes and established a benchmark of ~15x coverage for ARG detection for E. coli in metagenomes. We demonstrate that for low relative abundances, sequencing depths of ~30 million reads or more may be required for adequate sensitivity for many applications
    corecore