1,273 research outputs found

    Theoretical Transmission Spectra During Extrasolar Giant Planet Transits

    Get PDF
    The recent transit observation of HD 209458 b - an extrasolar planet orbiting a sun-like star - confirmed that it is a gas giant and determined that its orbital inclination is 85 degrees. This inclination makes possible investigations of the planet atmosphere. In this paper we discuss the planet transmission spectra during a transit. The basic tenet of the method is that the planet atmosphere absorption features will be superimposed on the stellar flux as the stellar flux passes through the planet atmosphere above the limb. The ratio of the planet's transparent atmosphere area to the star area is small, approximately 10^{-3} to 10^{-4}; for this method to work very strong planet spectral features are necessary. We use our models of close-in extrasolar giant planets to estimate promising absorption signatures: the alkali metal lines, in particular the Na I and K I resonance doublets, and the He I 23S2^3S - 23P2^3P triplet line at 1083.0 nm. If successful, observations will constrain the line-of-sight temperature, pressure, and density. The most important point is that observations will constrain the cloud depth, which in turn will distinguish between different atmosphere models. We also discuss the potential of this method for EGPs at different orbital distances and orbiting non-solar-type stars.Comment: revised to agree with accepted paper, ApJ, in press. 12 page

    Lyalpha heating and its impact on early structure formation

    Full text link
    In this paper we have calculated the effect of Lyalpha photons emitted by the first stars on the evolution of the IGM temperature. We have considered both a standard Salpeter IMF and a delta-function IMF for very massive stars with mass 300 M_sun. We find that the Lyalpha photons produced by the stellar populations considered here are able to heat the IGM at z<25, although never above ~100 K. Stars with a Salpeter IMF are more effective as, due to the contribution from small-mass long-living stars, they produce a higher Lyalpha background. Lyalpha heating can affect the subsequent formation of small mass objects by producing an entropy floor that may limit the amount of gas able to collapse and reduce the gas clumping.We find that the gas fraction in halos of mass below ~ 5 x 10^6 M_sun is less than 50% (for the smallest masses this fraction drops to 1% or less) compared to a case without Lyalpha heating. Finally, Lyalpha photons heat the IGM temperature above the CMB temperature and render the 21cm line from neutral hydrogen visible in emission at z<15.Comment: 7 pages, 5 figures, to be printed in MNRA

    Demonstrating high-precision photometry with a CubeSat: ASTERIA observations of 55 Cancri e

    Get PDF
    ASTERIA (Arcsecond Space Telescope Enabling Research In Astrophysics) is a 6U CubeSat space telescope (10 cm x 20 cm x 30 cm, 10 kg). ASTERIA's primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing control and high-stabilty thermal control. ASTERIA demonstrated 0.5 arcsecond RMS pointing stability and ±\pm10 milliKelvin thermal control of its camera payload during its primary mission, a significant improvement in pointing and thermal performance compared to other spacecraft in ASTERIA's size and mass class. ASTERIA launched in August 2017 and deployed from the International Space Station (ISS) November 2017. During the prime mission (November 2017 -- February 2018) and the first extended mission that followed (March 2018 - May 2018), ASTERIA conducted opportunistic science observations which included collection of photometric data on 55 Cancri, a nearby exoplanetary system with a super-Earth transiting planet. The 55 Cancri data were reduced using a custom pipeline to correct CMOS detector column-dependent gain variations. A Markov Chain Monte Carlo (MCMC) approach was used to simultaneously detrend the photometry using a simple baseline model and fit a transit model. ASTERIA made a marginal detection of the known transiting exoplanet 55 Cancri e (2\sim2~\Rearth), measuring a transit depth of 374±170374\pm170 ppm. This is the first detection of an exoplanet transit by a CubeSat. The successful detection of super-Earth 55 Cancri e demonstrates that small, inexpensive spacecraft can deliver high-precision photometric measurements.Comment: 23 pages, 9 figures. Accepted in A

    Bayesian analysis of exoplanet and binary orbits

    Full text link
    We introduce BASE (Bayesian astrometric and spectroscopic exoplanet detection and characterisation tool), a novel program for the combined or separate Bayesian analysis of astrometric and radial-velocity measurements of potential exoplanet hosts and binary stars. The capabilities of BASE are demonstrated using all publicly available data of the binary Mizar A.Comment: Accepted for publication in Astronomy & Astrophysic

    Can early years professionals determine which preschoolers have comprehension delays? A comparison of two screening tools

    Get PDF
    Language comprehension delays in pre-schoolers are predictive of difficulties in a range of developmental domains. In England, early years setting staff are required to assess the language comprehension of two-year-olds in their care. Many use a format based on the Early Years Foundation Stage My Unique Child (EYFS:UCCS ) in which the child’s language comprehension is assigned to an age band based on written guidance. Seventy 2½-3-year-olds were assessed on the comprehension component of the Preschool Language Scale (PLS) by psychology graduates. Early years practitioners assessed language comprehension in the same children using the EYFS:UCCS and the WellComm which involves some direct testing. The EYFS:UCCS had poor sensitivity and specificity and the understanding section did not correlate with the PLS. The WellComm had good-acceptable levels of sensitivity and specificity and significantly correlated with the PLS. Early years setting staff can accurately assess the language comprehension of two-year-olds if provided with a tool which gives specific instructions on administration, but current frequently used procedures (EYFS:UCCS) are not fit for this purpose

    Binarity of Transit Host Stars - Implications on Planetary Parameters

    Full text link
    Straight-forward derivation of planetary parameters can only be achieved in transiting planetary systems. However, planetary attributes such as radius and mass strongly depend on stellar host parameters. Discovering a transit host star to be multiple leads to a necessary revision of the derived stellar and planetary parameters. Based on our observations of 14 transiting exoplanet hosts, we derive parameters of the individual components of three transit host stars (WASP-2, TrES-2, and TrES-4) which we detected to be binaries. Two of these have not been known to be multiple before. Parameters of the corresponding exoplanets are revised. High-resolution "Lucky Imaging" with AstraLux at the 2.2m Calar Alto telescope provided near diffraction limited images in i' and z' passbands. These results have been combined with existing planetary data in order to recalibrate planetary attributes. Despite the faintness (delta mag ~ 4) of the discovered stellar companions to TrES-2, TrES-4, and WASP-2, light-curve deduced parameters change by up to more than 1sigma. We discuss a possible relation between binary separation and planetary properties, which - if confirmed - could hint at the influence of binarity on the planet formation process.Comment: 9 pages, 3 Figures. Accepted by A&

    Refraction in exoplanet atmospheres: Photometric signatures, implications for transmission spectroscopy, and search in Kepler data

    Full text link
    Refraction deflects photons that pass through atmospheres, which affects transit light curves. Refraction thus provides an avenue to probe physical properties of exoplanet atmospheres and to constrain the presence of clouds and hazes. In addition, an effective surface can be imposed by refraction, thereby limiting the pressure levels probed by transmission spectroscopy. The main objective of the paper is to model the effects of refraction on photometric light curves for realistic planets and to explore the dependencies on atmospheric physical parameters. We also explore under which circumstances transmission spectra are significantly affected by refraction. Finally, we search for refraction signatures in photometric residuals in Kepler data. We use the model of Hui & Seager (2002) to compute deflection angles and refraction transit light curves, allowing us to explore the parameter space of atmospheric properties. The observational search is performed by stacking large samples of transit light curves from Kepler. We find that out-of-transit refraction shoulders are the most easily observable features, which can reach peak amplitudes of ~10 parts per million (ppm) for planets around Sun-like stars. More typical amplitudes are a few ppm or less for Jovians and at the sub-ppm level for super-Earths. Interestingly, the signal-to-noise ratio of any refraction residuals for planets orbiting Sun-like hosts are expected to be similar for planets orbiting red dwarfs. We also find that the maximum depth probed by transmission spectroscopy is not limited by refraction for weakly lensing planets, but that the incidence of refraction can vary significantly for strongly lensing planets. We find no signs of refraction features in the stacked Kepler light curves, which is in agreement with our model predictions.Comment: Accepted for publication in A&

    Geodynamics and Rate of Volcanism on Massive Earth-like Planets

    Full text link
    We provide estimates of volcanism versus time for planets with Earth-like composition and masses from 0.25 to 25 times Earth, as a step toward predicting atmospheric mass on extrasolar rocky planets. Volcanism requires melting of the silicate mantle. We use a thermal evolution model, calibrated against Earth, in combination with standard melting models, to explore the dependence of convection-driven decompression mantle melting on planet mass. Here we show that (1) volcanism is likely to proceed on massive planets with plate tectonics over the main-sequence lifetime of the parent star; (2) crustal thickness (and melting rate normalized to planet mass) is weakly dependent on planet mass; (3) stagnant lid planets live fast (they have higher rates of melting than their plate tectonic counterparts early in their thermal evolution) but die young (melting shuts down after a few Gyr); (4) plate tectonics may not operate on high mass planets because of the production of buoyant crust which is difficult to subduct; and (5) melting is necessary but insufficient for efficient volcanic degassing - volatiles partition into the earliest, deepest melts, which may be denser than the residue and sink to the base of the mantle on young, massive planets. Magma must also crystallize at or near the surface, and the pressure of overlying volatiles must be fairly low, if volatiles are to reach the surface. If volcanism is detected in the Tau Ceti system, and tidal forcing can be shown to be weak, this would be evidence for plate tectonics.Comment: Revised version, accepted by Astrophysical Journa

    Optimal starshade observation scheduling

    Full text link
    editorial reviewedAn exoplanet direct imaging mission using an external occulter for starlight suppression could potentially achieve higher contrasts and throughputs than an equivalently sized telescope with an internal coronagraph. We consider a formation flying mission where the starshade must station-keep with a telescope, assumed to be on a halo orbit about the Sun-Earth L2 point, during observations and slew between observations as the telescope re-orients to target the next star. We use a parameterization of the slew fuel cost calculation based on interpolation of exact solutions of boundary value problem in the circular restricted three body formalism. Time constraints are imposed based on when stars are observable due to the motion of bright sources in the solar system, integration times, and mission lifetime constraints. Finally, we present a comprehensive cost function incorporating star completeness values as a reward heuristic and retargeting fuel costs to sequentially select the next best star to observe. Ensembles of simulations are conducted for different selection schemes; for a 3 year mission, taking two steps of the linear cost function produces the most unique detections with an average of 7.08± 2.55
    corecore