679 research outputs found

    La institucionalización de los sistemas de partido en la América Latina

    Get PDF
    [ES] Estos autores señalan que la institucionalización de un sistema de partidos es importante en el proceso de consolidación democrática en la mayoría de los países latinoamericanos. Un sistema de partidos institucionalizado implica estabilidad en la competición intrapartidista, la existencia de partidos con raíces estables en la sociedad, la legitimidad de partidos, elecciones e instituciones, y unas organizaciones partidistas con reglas y estructuras razonablemente estables. También establecen diferencias en el grado de institucionalización y tratan de caracterizar los distintos sistemas de partidos en América Latina.[EN] These authors argue that institutionalizing a party system is important to the process of democratic consolidation in mast of Latin American countries. An institutionalized party system implies stability in interparty competition, the existence of parties that have stablee roots in society, the legitimacy of parties elections and institutions and party organizations with reasonably stablee rules and estructures. They also establish differences in the degree of institutionalization and try to charaterize the district party systems in Latin America

    Cutaneous glucocorticoid receptor sensitivity and proinflammatory cytokine levels in antidepressant-resistant depression

    Get PDF
    ABSTRACT Background. There is evidence to indicate that peripheral glucocorticoid receptor (GR) function is reduced in major depression, and a possible molecular explanation for this is the impact of raised pro-inflammatory cytokines. The topical steroid vasoconstriction assay provides a convenient probe of peripheral GR function. The present study sought to assess the sensitivity of peripheral GRs in antidepressant-resistant major depressives and investigate the association between GR sensitivity and circulating plasma cytokines. Method. Nineteen antidepressant-resistant depressives together with age- and sex-matched healthy controls underwent the steroid vasoconstriction assay using three commercial preparations of corticosteroids containing clobetasol propionate 0.05%, betamethasone valerate 0.1%, and clobetasone butyrate 0.05%, corresponding to very potent, potent, and moderately potent steroid creams respectively. The pro-inflammatory cytokines, tumour necrosis factor-alpha (TNF-a) and interleukin-6 (IL-6) were measured using enzyme-linked immunosorbent assays. The severity of the depressive episode was assessed using the Hamilton Depression Scale (HAMD). Results. Depressed subjects had a significantly reduced vasoconstriction response across all three strengths of steroid. They also had significantly higher concentrations of TNF-a and IL-6. There was a significant inverse correlation between TNF-a concentration and vasoconstriction response and also between the HAMD score and vasoconstriction response. Conclusions. These findings suggest that cutaneous GR function is abnormal in antidepressantresistant depression, that circulating TNF-a may play a significant role in this abnormality and that the efficacy of topical steroids in antidepressant-resistant depressives is reduced

    Functional genomics and microbiome profiling of the Asian longhorned beetle (\u3ci\u3eAnoplophora glabripennis\u3c/i\u3e) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles

    Get PDF
    Background: Wood-feeding beetles harbor an ecologically rich and taxonomically diverse assemblage of gut microbes that appear to promote survival in woody tissue, which is devoid of nitrogen and essential nutrients. Nevertheless, the contributions of these apparent symbionts to digestive physiology and nutritional ecology remain uncharacterized in most beetle lineages. Results: Through parallel transcriptome profiling of beetle- and microbial- derived mRNAs, we demonstrate that the midgut microbiome of the Asian longhorned beetle (Anoplophora glabripennis), a member of the beetle family Cerambycidae, is enriched in biosynthetic pathways for the synthesis of essential amino acids, vitamins, and sterols. Consequently, the midgut microbiome of A. glabripennis can provide essential nutrients that the beetle cannot obtain from its woody diet or synthesize itself. The beetle gut microbiota also produce their own suite of transcripts that can enhance lignin degradation, degrade hemicellulose, and ferment xylose and wood sugars. An abundance of cellulases from several glycoside hydrolase families are expressed endogenously by A. glabripennis, as well as transcripts that allow the beetle to convert microbe-synthesized essential amino acids into non-essential amino acids. A. glabripennis and its gut microbes likely collaborate to digest carbohydrates and convert released sugars and amino acid intermediates into essential nutrients otherwise lacking from their woody host plants. Conclusions: The nutritional provisioning capabilities of the A. glabripennis gut microbiome may contribute to the beetles’ unusually broad host range. The presence of some of the same microbes in the guts of other Cerambycidae and other wood-feeding beetles suggests that partnerships with microbes may be a facilitator of evolutionary radiations in beetles, as in certain other groups of insects, allowing access to novel food sources through enhanced nutritional provisioning

    Characterization of novel \u3ci\u3eBrown midrib 6\u3c/i\u3e mutations affecting lignin biosynthesis in sorghum

    Get PDF
    The presence of lignin reduces the quality of lignocellulosic biomass for forage materials and feedstock for biofuels. In C4 grasses, the brown midrib phenotype has been linked to mutations to genes in the monolignol biosynthesis pathway. For example, the Bmr6 gene in sorghum (Sorghum bicolor) has been previously shown to encode cinnamyl alcohol dehydrogenase (CAD), which catalyzes the final step of the monolignol biosynthesis pathway. Mutations in this gene have been shown to reduce the abundance of lignin, enhance digestibility, and improve saccharification efficiencies and ethanol yields. Nine sorghum lines harboring five different bmr6 alleles were identified in an EMS-mutagenized TILLING population. DNA sequencing of Bmr6 revealed that the majority of the mutations impacted evolutionarily conserved amino acids while three-dimensional structural modeling predicted that all of these alleles interfered with the enzyme’s ability to bind with its NADPH cofactor. All of the new alleles reduced in vitro CAD activity levels and enhanced glucose yields following saccharification. Further, many of these lines were associated with higher reductions in acid detergent lignin compared to lines harboring the previously characterized bmr6-ref allele. These bmr6 lines represent new breeding tools for manipulating biomass composition to enhance forage and feedstock quality

    \u3ci\u3eWheat streak mosaic virus\u3c/i\u3e alters the transcriptome of its vector, wheat curl mite (\u3ci\u3eAceria tosichella Keifer\u3c/i\u3e), to enhance mite development and population expansion

    Get PDF
    Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae) is an economically important wheat virus that is transmitted by the wheat curl mite (WCM; Aceria tosichella Keifer) in a persistent manner. Virus–vector coevolution may potentially influence vector gene expression to prolong viral association and thus increase virus transmission efficiency and spread. To understand the transcriptomic responses of WCM to WSMV, RNA sequencing was performed to assemble and analyse transcriptomes of WSMV viruliferous and aviruliferous mites. Among 7291 de novo-assembled unigenes, 1020 were differentially expressed between viruliferous and aviruliferous WCMs using edgeR at a false discovery rate ≤0.05. Differentially expressed unigenes were enriched for 108 gene ontology terms, with the majority of the unigenes showing downregulation in viruliferous mites in comparison to only a few unigenes that were upregulated. Protein family and metabolic pathway enrichment analyses revealed that most downregulated unigenes encoded enzymes and proteins linked to stress response, immunity and development. Mechanistically, these predicted changes in mite physiology induced by viral association could be suggestive of pathways needed for promoting virus–vector interactions. Overall, our data suggest that transcriptional changes in viruliferous mites facilitate prolonged viral association and alter WCM development to expedite population expansion, both of which could enhance viral transmission

    Genetic Resources for the Improvement of Switchgrass (\u3cem\u3ePanicum virgatum\u3c/em\u3e L.) for Biomass and Forage

    Get PDF
    Switchgrass (Panicum virgatum L.) is an important forage and biomass species for many parts of the USA. Switchgrass can be of several ploidies. Octoploid cultivars are most often used in forage and conservation settings, while the tetraploid cultivars are mostly targeted for bioenergy end-uses, due to their higher biomass yields. Switchgrass populations also occur as upland and lowland ecotypes, and constitute different heterotic groups. Switchgrass is mostly an obligate outcrosser resulting in substantial genotypic and phenotypic variation within populations. In the last ~15 years, significant resources have been dedicated to both breeding and understanding the genomic makeup of this plant, with a focus on bioenergy. This investment has resulted in the development of elite lines as well as a considerable increase in available genetic, physiological, and biomass-related information. The United States Department of Agriculture-Agricultural Research Service has been a major player in these developments (Mitchell and Schmer, 2012; Vogel et al., 2011). With significant improvements in DNA-sequencing technologies (High Throughput Sequencing, HTS), it has become possible to undertake large-scale analysis of both the genomic and functional genomic components of switchgrass. One such undertaking by the United States Department of Energy-Joint Genomics Institute has provided a draft assembly and annotation of the switchgrass genome (www.phytozome.org). This remarkable resource has permitted a complete utilization of HTS to analyze gene expression using RNA-Seq and related bioinformatic pipelines. Large-scale studies that are performed using field-grown plants and populations with well-characterized phenotypic traits, it increases the likelihood of discovering molecular events that underpin phenomena of interest. Even though lowland tetraploid cultivars have higher biomass yields than upland tetraploid cultivars, they can suffer significant winter-kill in more northern locations (Central Great Plains of the USA). Winter-kill is associated with the loss of rhizomes and other perenniating structures resulting in a complete or partial loss of tillering ability in the following seasons. Partial attrition of tiller production serves to limit new rhizome growth in successive years. One or more cycles of winter kill will ultimately kill the plant. We are trying to understand the cellular metabolism associated with the onset of rhizome dormancy and to connect the links between tiller/leaf senescence and rhizome metabolism using field grown plants from diverse populations, HTS and RNA-Seq

    Wheat streak mosaic virus alters the transcriptome of its vector, wheat curl mite (Aceria tosichella Keifer), to enhance mite development and population expansion

    Get PDF
    Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae) is an economically important wheat virus that is transmitted by the wheat curl mite (WCM; Aceria tosichella Keifer) in a persistent manner. Virus–vector coevolution may potentially influence vector gene expression to prolong viral association and thus increase virus transmission efficiency and spread. To understand the transcriptomic responses of WCM to WSMV, RNA sequencing was performed to assemble and analyse transcriptomes of WSMV viruliferous and aviruliferous mites. Among 7291 de novo-assembled unigenes, 1020 were differentially expressed between viruliferous and aviruliferous WCMs using edgeR at a false discovery rate 0.05. Differentially expressed unigenes were enriched for 108 gene ontology terms, with the majority of the unigenes showing downregulation in viruliferous mites in comparison to only a few unigenes that were upregulated. Protein family and metabolic pathway enrichment analyses revealed that most downregulated unigenes encoded enzymes and proteins linked to stress response, immunity and development. Mechanistically, these predicted changes in mite physiology induced by viral association could be suggestive of pathways needed for promoting virus–vector interactions. Overall, our data suggest that transcriptional changes in viruliferous mites facilitate prolonged viral association and alter WCM development to expedite population expansion, both of which could enhance viral transmission

    Global Responses of Resistant and Susceptible Sorghum (\u3ci\u3eSorghum bicolor\u3c/i\u3e) to Sugarcane Aphid (\u3ci\u3eMelanaphis sacchari\u3c/i\u3e)

    Get PDF
    The sugarcane aphid (Melanaphis sacchari) has emerged as a significant pest for sorghum. The use of sugarcane aphid-resistant sorghum germplasm with integrated pest management strategies appears to be an excellent solution to this problem. In this study, a resistant line (RTx2783) and a susceptible line (A/BCK60) were used to characterize the differences in plant responses to the sugarcane aphid through a series of experiments, which examined global sorghum gene expression, aphid feeding behavior and inheritance of aphid resistance. The global transcriptomic responses to sugarcane aphids in resistant and susceptible plants were identified using RNA-seq and compared to the expression profiles of uninfested plants at 5, 10, and 15 days post-infestation. The expression of genes from several functional categories were altered in aphid-infested susceptible plants, which included genes related to cell wall modification, photosynthesis and phytohormone biosynthesis. In the resistant line, only 31 genes were differentially expressed in the infested plants relative to uninfested plants over the same timecourse. However, network analysis of these transcriptomes identified a co-expression module where the expression of multiple sugar and starch associated genes were repressed in infested resistant plants at 5 and 10 days. Several nucleotide-binding-site, leucine-rich repeat (NBS-LRR) and disease resistance genes similar to aphid resistance genes identified in other plants are identified in the current study which may be involved in sugarcane aphid resistance. The electrical penetration graph (EPG) results indicated that sugarcane aphid spent approximately twice as long in non-probing phase, and approximately a quarter of time in phloem ingestion phase on the resistant and F1 plants compared to susceptible plant. Additionally, network analysis identified a phloem protein 2 gene expressed in both susceptible and resistant plants early (day 5) of infestation, which may contribute to defense against aphid feeding within sieve elements. The resistant line RTx2783 displayed both antixenosis and antibiosis modes of resistance based on EPG and choice bioassays between susceptible, resistant and F1 plants. Aphid resistance from RTx2783 segregated as a single dominant locus in the F2 generation, which will enable breeders to rapidly develop sugarcane aphid-resistant hybrids using RTx2783 as the male parent

    Divergent Switchgrass Cultivars Modify Cereal Aphid Transcriptomes

    Get PDF
    Schizaphis graminum Rondani (Hemiptera: Aphididae) and Sipha flava Forbes (Hemiptera: Aphididae) are two common pests of bioenergy grasses. Despite the fact that they are both considered generalists, they differ in their ability to colonize Panicum virgatum cultivars. For example, S. flava colonizes both P. virgatum cv. Summer and P. virgatum cv. Kanlow whereas S. graminum can only colonize Summer. To study the molecular responses of these aphids to these two switchgrass cultivars, we generated de novo transcriptome assemblies and compared the expression profiles of aphids feeding on both cultivars to profiles associated with feeding on a highly susceptible sorghum host and a starvation treatment. Transcriptome assemblies yielded 8,428 and 8,866 high-quality unigenes for S. graminum and S. flava, respectively. Overall, S. graminum responded strongly to all three treatments after 12 h with an upregulation of unigenes coding for detoxification enzymes while major transcriptional changes were not observed in S. flava until 24 h. Additionally, while the two aphids responded to the switchgrass feeding treatment by downregulating unigenes linked to growth and development, their responses to Summer and Kanlow diverged significantly. Schizaphis graminum upregulated more unigenes coding for stress-responsive enzymes in the Summer treatment compared to S. flava; however, many of these unigenes were actually downregulated in the Kanlow treatment. In contrast, S. flava appeared capable of overcoming host defenses by upregulating a larger number of unigenes coding for detoxification enzymes in the Kanlow treatment. Overall, these findings are consistent with previous studies on the interactions of these two cereal aphids to divergent switchgrass hosts

    Brexit is on: Britain votes to leave the EU – experts respond

    Get PDF
    First paragraph: The United Kingdom has voted in a referendum to leave the European Union. It is a result which will have dramatic implications for the future of the global economy, international relations and the European continent. The UK Prime Minister, David Cameron, has given notice of his intention to resign. Here, leading experts offering explanations and opinions on what is an unprecedented geopolitical and economic situation. This article will update through the day. Access this article on The Conversation website: https://theconversation.com/brexit-is-on-britain-votes-to-leave-the-eu-experts-respond-6157
    • …
    corecore