301 research outputs found

    Constraints on the core mu-gradient of the solar-like star HD 49385 via low-degree mixed modes

    Full text link
    The existence of an l=1 avoided crossing in the spectrum of the solar-like pulsator CoRoT-target HD 49385 was established by Deheuvels & Michel (2009). It is the first confirmed detection of such a phenomenon. The authors showed in a preliminary modeling of the star that it was in a post main sequence status. Being a 1.3 Msun-star, HD 49385 has had a convective core during its main sequence phase. The mu-gradient left by the withdrawal of this core bears information about the processes of transport at the boundary of the core. We here investigate the constraints that the observed avoided crossing brings on the mu-gradient in the core of the star.Comment: 5 pages, 5 figures, accepted in Astron. Nach. This work was presented at the HELAS Conference in Lanzarote in February 201

    Stellar ages from asteroseismology

    Full text link
    Asteroseismology provides powerful means to probe stellar interiors. The oscillations frequencies are closely related to stellar interior properties via the density and sound speed profiles. Since these are tightly linked with the mass and evolutionary state, we can expect to determine the age and mass of a star from the comparison of its oscillation spectrum with predictions of stellar models. Such a comparison suffers both from the problems we face when modeling a particular star (as the uncertainties on global parameters and chemical composition) and from our misunderstanding of processes at work in stellar interiors (as the transport processes that may lead to core mixing and affect the model ages). For stars where observations have provided precise and numerous oscillation frequencies together with accurate global parameters and additional information (as the radius or the mass if the star is in a binary system, the interferometric radius or the mean density if the star is an exoplanet host), we can also expect to better constrain the physical description of the stellar structure and to get a more reliable age estimation. After a survey of stellar pulsations, we present some seismic diagnostics that can be used to infer the age of a star as well as their limitations. We then illustrate the ability of asteroseismology to scrutinize stellar interiors on the basis of a few exemples. In the years to come, extended very precise asteroseismic observations are expected, in photometry or in spectroscopy, from ground-based (HARPS, CORALIE, ELODIE, UVES, UCLES, SIAMOIS, SONG) or spatial devices (MOST, CoRoT, WIRE, Kepler, PLATO). This will considerably enlarge the sample of stars eligible to asteroseismic age determination and should allow to estimate the age of individual stars with a 10-20% accuracy.Comment: 10 pages, 15 figures, Proc. of the IAU Symp. 258 "The Ages of Stars", Baltimore USA 13-17 Oct 2008, eds D. Soderblom et al., CUP in pres

    Inference from adiabatic analysis of solar-like oscillations in Red giants

    Full text link
    The clear detection with CoRoT and KEPLER of radial and non-radial solar-like oscillations in many red giants paves the way to seismic inferences on the structure of such stars. We present an overview of the properties of the adiabatic frequencies and frequency separations of radial and non-radial oscillation modes, highlighting how their detection allows a deeper insight into the properties of the internal structure of red giants. In our study we consider models of red giants in different evolutionary stages, as well as of different masses and chemical composition. We describe how the large and small separations computed with radial modes and with non-radial modes mostly trapped in the envelope depend on the stellar global parameters and evolutionary state, and we compare our theoretical predictions and first KEPLER data.Finally, we find that the properties of dipole modes constitute a promising seismic diagnostic of the evolutionary state of red-giant stars.Comment: 6 pages, 5 figures. Proceedings of IV Helas International Conference: "Seismological Challenges for Stellar Structure", Lanzarote (Canary Islands, Spain), 1-5 February 201

    Theoretical study of γ\gamma Doradus pulsations in pre-main sequence stars

    Full text link
    The question of the existence of pre-main sequence (PMS) γ\gamma~Doradus (γ\gamma~Dor) has been raised by the observations of young clusters such as NGC~884 hosting γ\gamma~Dor members. We have explored the properties of γ\gamma~Dor type pulsations in a grid of PMS models covering the mass range 1.2M<M<2.5M1.2 M_\odot < M_* < 2.5 M_\odot and we derive the theoretical instability strip (IS) for the PMS γ\gamma~Dor pulsators. We explore the possibility of distinguishing between PMS and MS γ\gamma~Dor by the behaviour of the period spacing of their high order gravitygravity-modes (gg-modes).Comment: 5 pages, 6 figures, Proc. HELAS IV Conference, Lanzarote, February 2010. Eds T. Roca Cort\'es, P. Pall\'e and S. Jim\'enez Reyes. Accepted in Astron. Nac

    A new seismic analysis of Alpha Centauri

    Full text link
    Models of alpha Cen A & B have been computed using the masses determined by Pourbaix et al. (2002) and the data derived from the spectroscopic analysis of Neuforge and Magain (1997). The seismological data obtained by Bouchy and Carrier (2001, 2002) do help improve our knowledge of the evolutionary status of the system. All the constraints are satisfied with a model which gives an age of about 6 Gyr for the binary.Comment: to be published in Astronomy and Astrophysic

    Determining the metallicity of the solar envelope using seismic inversion techniques

    Full text link
    The solar metallicity issue is a long-lasting problem of astrophysics, impacting multi- ple fields and still subject to debate and uncertainties. While spectroscopy has mostly been used to determine the solar heavy elements abundance, helioseismologists at- tempted providing a seismic determination of the metallicity in the solar convective enveloppe. However, the puzzle remains since two independent groups prodived two radically different values for this crucial astrophysical parameter. We aim at provid- ing an independent seismic measurement of the solar metallicity in the convective enveloppe. Our main goal is to help provide new information to break the current stalemate amongst seismic determinations of the solar heavy element abundance. We start by presenting the kernels, the inversion technique and the target function of the inversion we have developed. We then test our approach in multiple hare-and-hounds exercises to assess its reliability and accuracy. We then apply our technique to solar data using calibrated solar models and determine an interval of seismic measurements for the solar metallicity. We show that our inversion can indeed be used to estimate the solar metallicity thanks to our hare-and-hounds exercises. However, we also show that further dependencies in the physical ingredients of solar models lead to a low accuracy. Nevertheless, using various physical ingredients for our solar models, we determine metallicity values between 0.008 and 0.014.Comment: Accepted for publication in MNRA

    Thorough analysis of input physics in CESAM and CLES codes

    Full text link
    This contribution is not about the quality of the agreement between stellar models computed by CESAM and CLES codes, but more interesting, on what ESTA-Task~1 run has taught us about these codes and about the input physics they use. We also quantify the effects of different implementations of the same physics on the seismic properties of the stellar models, that in fact is the main aim of ESTA experiments.Comment: 11 pages, 12 fig. Accepted for publication in ApSS CoRoT/ESTA Volu

    Analysis of MERCATOR data Part I: variable B stars

    Get PDF
    We re-classified 31 variable B stars which were observed more than 50 times in the Geneva photometric system with the P7 photometer attached to the MERCATOR telescope (La Palma) during its first 3 years of scientific observations. HD89688 is a possible beta Cephei/slowly pulsating B star hybrid and the main mode of the COROT target HD180642 shows non-linear effects. The Maia candidates are re-classified as either ellipsoidal variables or spotted stars. Although the mode identification is still ongoing, all the well-identified modes so far have a degree l = 0, 1 or 2.Comment: 4 pages, 3 figures. To appear in: Proceedings of JENAM 2005 'Distant worlds', Communications in Asteroseismolog

    Seismic modelling of the β\beta\,Cep star HD\,180642 (V1449\,Aql)

    Get PDF
    We present modelling of the β\beta\,Cep star HD\,180642 based on its observational properties deduced from CoRoT and ground-based photometry as well as from time-resolved spectroscopy. We investigate whether present-day state-of-the-art models are able to explain the full seismic behaviour of this star, which has extended observational constraints for this type of pulsator. We constructed a dedicated database of stellar models and their oscillation modes tuned to fit the dominant radial mode frequency of HD\,180642, by means of varying the hydrogen content, metallicity, mass, age, and core overshooting parameter. We compared the seismic properties of these models with those observed. We find models that are able to explain the numerous observed oscillation properties of the star, for a narrow range in mass of 11.4--11.8\,M_\odot and no or very mild overshooting (with up to 0.05 local pressure scale heights), except for an excitation problem of the =3\ell=3, p1_1 mode. We deduce a rotation period of about 13\,d, which is fully compatible with recent magnetic field measurements. The seismic models do not support the earlier claim of solar-like oscillations in the star. We instead ascribe the power excess at high frequency to non-linear resonant mode coupling between the high-amplitude radial fundamental mode and several of the low-order pressure modes. We report a discrepancy between the seismic and spectroscopic gravity at the 2.5σ2.5\sigma level.Comment: 10 pages, 2 Tables, 6 Figures. Accepted for publication in Astronomy and Astrophysic

    Seismic signature of envelope penetrative convection: the CoRoT star HD 52265

    Full text link
    Aims: We aim at characterizing the inward transition from convective to radiative energy transport at the base of the convective envelope of the solar-like oscillator HD 52265 recently observed by the CoRoT satellite. Methods: We investigated the origin of one specific feature found in the HD 52265 frequency spectrum. We modelled the star to derive the internal structure and the oscillation frequencies that best match the observations and used a seismic indicator sensitive to the properties of the base of the envelope convection zone. Results: The seismic indicators clearly reveal that to best represent the observed properties of HD 52265, models must include penetrative convection below the outer convective envelope. The penetrative distance is estimated to be 0.95HP\sim0.95 H_P, which corresponds to an extent over a distance representing 6.0 per cents of the total stellar radius, significantly larger than what is found for the Sun. The inner boundary of the extra-mixing region is found at 0.800±0.004R0.800\pm0.004 R where R=1.3RR=1.3 R_\odot is the stellar radius. Conclusions: These results contribute to the tachocline characterization in stars other than the Sun.Comment: 4 pages, 4 figures, accepted for publication in Astronomy & Astrophysics Letter
    corecore