473 research outputs found

    MeV magnetosheath ions energized at the bow shock

    Get PDF
    A causal relationship between midlatitude magnetosheath energetic ions and bow shock magnetic geometry was previously established for ion energy up to 200 keV e−1 for the May 4, 1998, storm event. This study demonstrates that magnetosheath ions with energies above 200 keV up to 1 MeV simply extend the ion spectrum to form a power law tail. Results of cross-correlation analysis suggest that these ions also come directly from the quasi-parallel bow shock, not the magnetosphere. This is confirmed by a comparison of energetic ion fluxes simultaneously measured in the magnetosheath and at the quasi-parallel bow shock when both regions are likely connected by the magnetic field lines. We suggest that ions are accelerated at the quasi-parallel bow shock to energies as high as 1 MeV and subsequently transported into the magnetosheath during this event

    Generalised-Lorentzian Thermodynamics

    Full text link
    We extend the recently developed non-gaussian thermodynamic formalism \cite{tre98} of a (presumably strongly turbulent) non-Markovian medium to its most general form that allows for the formulation of a consistent thermodynamic theory. All thermodynamic functions, including the definition of the temperature, are shown to be meaningful. The thermodynamic potential from which all relevant physical information in equilibrium can be extracted, is defined consistently. The most important findings are the following two: (1) The temperature is defined exactly in the same way as in classical statistical mechanics as the derivative of the energy with respect to the entropy at constant volume. (2) Observables are defined in the same way as in Boltzmannian statistics as the linear averages of the new equilibrium distribution function. This lets us conclude that the new state is a real thermodynamic equilibrium in systems capable of strong turbulence with the new distribution function replacing the Boltzmann distribution in such systems. We discuss the ideal gas, find the equation of state, and derive the specific heat and adiabatic exponent for such a gas. We also derive the new Gibbsian distribution of states. Finally we discuss the physical reasons for the development of such states and the observable properties of the new distribution function.Comment: 13 pages, 1 figur

    New Insights into Dissipation in the Electron Layer During Magnetic Reconnection

    Full text link
    Detailed comparisons are reported between laboratory observations of electron-scale dissipation layers near a reconnecting X-line and direct two-dimensional full-particle simulations. Many experimental features of the electron layers, such as insensitivity to the ion mass, are reproduced by the simulations; the layer thickness, however, is about 3-5 times larger than the predictions. Consequently, the leading candidate 2D mechanism based on collisionless electron nongyrotropic pressure is insufficient to explain the observed reconnection rates. These results suggest that, in addition to the residual collisions, 3D effects play an important role in electron-scale dissipation during fast reconnection.Comment: 17 pages, 4 figure

    A golden orb-weaver spider (Araneae: Nephilidae: Nephila) from the Middle Jurassic of China

    Get PDF
    Nephila are large, conspicuous weavers of orb webs composed of golden silk, in tropical and subtropical regions. Nephilids have a sparse fossil record, the oldest described hitherto being Cretaraneus vilaltae from the Cretaceous of Spain. Five species from Neogene Dominican amber and one from the Eocene of Florissant, CO, USA, have been referred to the extant genus Nephila. Here, we report the largest known fossil spider, Nephila jurassica sp. nov., from Middle Jurassic (approx. 165 Ma) strata of Daohugou, Inner Mongolia, China. The new species extends the fossil record of the family by approximately 35 Ma and of the genus Nephila by approximately 130 Ma, making it the longest ranging spider genus known. Nephilidae originated somewhere on Pangaea, possibly the North China block, followed by dispersal almost worldwide before the break-up of the supercontinent later in the Mesozoic. The find suggests that the palaeoclimate was warm and humid at this time. This giant fossil orb-weaver provides evidence of predation on medium to large insects, well known from the Daohugou beds, and would have played an important role in the evolution of these insects

    Gas Accretion and Galactic Chemical Evolution: Theory and Observations

    Full text link
    This chapter reviews how galactic inflows influence galaxy metallicity. The goal is to discuss predictions from theoretical models, but particular emphasis is placed on the insights that result from using models to interpret observations. Even as the classical G-dwarf problem endures in the latest round of observational confirmation, a rich and tantalizing new phenomenology of relationships between MM_*, ZZ, SFR, and gas fraction is emerging both in observations and in theoretical models. A consensus interpretation is emerging in which star-forming galaxies do most of their growing in a quiescent way that balances gas inflows and gas processing, and metal dilution with enrichment. Models that explicitly invoke this idea via equilibrium conditions can be used to infer inflow rates from observations, while models that do not assume equilibrium growth tend to recover it self-consistently. Mergers are an overall subdominant mechanism for delivering fresh gas to galaxies, but they trigger radial flows of previously-accreted gas that flatten radial gas-phase metallicity gradients and temporarily suppress central metallicities. Radial gradients are generically expected to be steep at early times and then flattened by mergers and enriched inflows of recycled gas at late times. However, further theoretical work is required in order to understand how to interpret observations. Likewise, more observational work is needed in order to understand how metallicity gradients evolve to high redshifts.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springer. 29 pages, 2 figure

    Protonation-Induced Microphase Separation in Thin Films of a Polyelectrolyte-Hydrophilic Diblock Copolymer

    Get PDF
    Block copolymers composed of poly(oligo ethylene glycol methyl ether methacrylate) and poly(2-vinylpyridine) are disordered in the neat state but can be induced to order by protonation of the P2VP block, demonstrating a tunable and responsive method for triggering assembly in thin films. Comparison of protonation with the addition of salts shows that microphase separation is due to selective protonation of the P2VP block. Increasing acid incorporation and increasing 2-vinylpyridine content for P2VP minority copolymers both promote increasingly phase-separated morphologies, consistent with protonation increasing the effective strength of segregation between the two blocks. The self-assembled nanostructures formed after casting from acidic solutions may be tuned based on the amount and type of acid incorporation as well as the annealing treatment applied after casting, where both aqueous and polar organic solvents are shown to be effective. Therefore, POEGMA-b-P2VP is a novel ion-containing block copolymer whose morphologies can be facilely tuned during casting and processing by controlling its exposure to acid.United States. Dept. of Energy. Office of Basic Energy Sciences (Award DE-SC0001088)National Science Foundation (U.S.) (Award CMMI-1246740

    On Solving the Coronal Heating Problem

    Full text link
    This article assesses the current state of understanding of coronal heating, outlines the key elements of a comprehensive strategy for solving the problem, and warns of obstacles that must be overcome along the way.Comment: Accepted by Solar Physics; Published by Solar Physic

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure
    corecore