10 research outputs found
Understanding the Return of Genomic Sequencing Results Process: Content Review of Participant Summary Letters in the eMERGE Research Network
A challenge in returning genomic test results to research participants is how best to communicate complex and clinically nuanced findings to participants in a manner that is scalable to the large numbers of participants enrolled. The purpose of this study was to examine the features of genetic results letters produced at each Electronic Medical Records and Genomics (eMERGE3) Network site to assess their readability and content. Letters were collected from each site, and a qualitative analysis of letter content and a quantitative analysis of readability statistics were performed. Because letters were produced independently at each eMERGE site, significant heterogeneity in readability and content was found. The content of letters varied widely from a baseline of notifying participants that results existed to more detailed information about positive or negative results, as well as materials for sharing with family members. Most letters were significantly above the Centers for Disease Control-suggested reading level for health communication. While continued effort should be applied to make letters easier to understand, the ongoing challenge of explaining complex genomic information, the implications of negative test results, and the uncertainty that comes with some types of test and result makes simplifying letter text challenging
Patient and Family Preferences on Health System-Led Direct Contact for Cascade Screening
Health benefits to relatives of people at known genetic risk for hereditary cancer syndromes is key to realizing the promise of precision medicine. We conducted a qualitative study to design a patient- and family-centered program for direct contact of relatives to recommend cascade genetic testing. We conducted two rounds of data collection using focus groups followed by individual interviews with patients with HBOC or Lynch syndrome and a separate sample of people with a family history of hereditary cancers. Results indicate that U.S.-based health system-led direct contact of relatives is acceptable to patients and families, should take a programmatic approach, include consent of relatives before proband testing, complement to existing patient-mediated disclosure, and allow for relative control of information. Our findings suggest a set of requirements for U.S.-based direct contact programs that could ultimately benefit more relatives than current approaches
Recommended from our members
Ethical Considerations Related to Return of Results from Genomic Medicine Projects: The eMERGE Network (Phase III) Experience
We examined the Institutional Review Board (IRB) process at 9 academic institutions in the electronic Medical Records and Genomics (eMERGE) Network, for proposed electronic health record-based genomic medicine studies, to identify common questions and concerns. Sequencing of 109 disease related genes and genotyping of 14 actionable variants is being performed in ~28,100 participants from the 9 sites. Pathogenic/likely pathogenic variants in actionable genes are being returned to study participants. We examined each site’s research protocols, informed-consent materials, and interactions with IRB staff. Research staff at each site completed questionnaires regarding their IRB interactions. The time to prepare protocols for IRB submission, number of revisions and time to approval ranged from 10–261 days, 0–11, and 11–90 days, respectively. IRB recommendations related to the readability of informed consent materials, specifying the full range of potential risks, providing options for receiving limited results or withdrawal, sharing of information with family members, and establishing the mechanisms to answer participant questions. IRBs reviewing studies that involve the return of results from genomic sequencing have a diverse array of concerns, and anticipating these concerns can help investigators to more effectively engage IRBs
A genome-wide association study identifies variants in KCNIP4 associated with ACE inhibitor-induced cough
The most common side effect of angiotensin-converting enzyme inhibitor (ACEi) drugs is cough. We conducted a genome-wide association study (GWAS) of ACEi-induced cough among 7080 subjects of diverse ancestries in the Electronic Medical Records and Genomics (eMERGE) network. Cases were subjects diagnosed with ACEi-induced cough. Controls were subjects with at least 6 months of ACEi use and no cough. A GWAS (1595 cases and 5485 controls) identified associations on chromosome 4 in an intron of KCNIP4. The strongest association was at rs145489027 (minor allele frequency=0.33, odds ratio (OR)=1.3 (95% confidence interval (CI): 1.2-1.4), P=1.0 × 10(-8)). Replication for six single-nucleotide polymorphisms (SNPs) in KCNIP4 was tested in a second eMERGE population (n=926) and in the Genetics of Diabetes Audit and Research in Tayside, Scotland (GoDARTS) cohort (n=4309). Replication was observed at rs7675300 (OR=1.32 (1.01-1.70), P=0.04) in eMERGE and at rs16870989 and rs1495509 (OR=1.15 (1.01-1.30), P=0.03 for both) in GoDARTS. The combined association at rs1495509 was significant (OR=1.23 (1.15-1.32), P=1.9 × 10(-9)). These results indicate that SNPs in KCNIP4 may modulate ACEi-induced cough risk.The Pharmacogenomics Journal advance online publication, 14 July 2015; doi:10.1038/tpj.2015.51
Family history and the natural history of colorectal cancer: Systematic review
Purpose: Family history of colorectal cancer (CRC) is a known risk factor for CRC and encompasses both genetic and shared environmental risks. Methods: We conducted a systematic review to estimate the impact of family history on the natural history of CRC and adherence to screening. Results: We found high heterogeneity in family-history definitions, the most common definition being one or more first-degree relatives. The prevalence of family history may be lower than the commonly cited 10%, and confirms evidence for increasing levels of risk associated with increasing family-history burden. There is evidence for higher prevalence of adenomas and of multiple adenomas in people with family history of CRC but no evidence for differential adenoma location or adenoma progression by family history. Limited data regarding the natural history of CRC by family history suggest a differential age or stage at cancer diagnosis and mixed evidence with respect to tumor location. Adherence to recommended colonoscopy screening was higher in people with a family history of CRC. Conclusion: Stratification based on polygenic and/or multifactorial risk assessment may mature to the point of displacing family history-based approaches, but for the foreseeable future, family history may remain a valuable clinical tool for identifying individuals at increased risk for CRC
Epistatic Gene-Based Interaction Analyses for Glaucoma in eMERGE and NEIGHBOR Consortium
10.1371/journal.pgen.1006186PLoS Genetics129e100618
Recommended from our members
Lessons learned from the eMERGE Network: balancing genomics in discovery and practice
The Electronic Medical Records and Genomics (eMERGE) Network, established in 2007, is a consortium of academic and integrated health systems conducting discovery and implementation research in translational genomics. Here, we outline the history of the network, highlight major impacts and lessons learned, and present the tools and resources developed for large-scale genomic analyses and translation into a clinical setting. The network developed methods to extract phenotypes from the electronic medical record to perform genome-wide and phenome-wide association studies. Recruited cohorts were clinically sequenced off a custom panel for targeted sequencing of variants and monogenic disease risks and returned to participants to investigate the impact of return of genomic results. After generating a 105,000 participant-imputed genome-wide association study (GWAS) dataset for discovery, the network enrolled and sequenced 24,998 participants. Integration of these results into the medical record and the effects of results on participants provided key lessons to the field. These learned lessons inform genetic research in diverse populations and provide insights into the clinical impact of return and implementation of genomic medicine using the electronic medical record. The lessons produced by the eMERGE Network can be utilized by other consortia as translational genomic medicine research evolves